Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Thị Thùy Dương
19 tháng 11 2015 lúc 4:14

Gọi 2 số chính phương liên tiếp đó là n; (n+1)2 

ta có : \(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2=\)

Không đúng: VD: 25;36 : 25+36 +25.36=71+900  =971 không là số chính phương

Nguyễn Khánh Linh
19 tháng 11 2015 lúc 20:17

mình tính ra là 161 

 

Nguyễn Thị Mỹ Lệ
Xem chi tiết
Nguyễn Đình Dũng
15 tháng 11 2016 lúc 22:45

Gọi hai số chính phương liên tiếp là k2 và (k+1)2

Ta có:

k2 + (k+1)2 + k2(k+1)2

= k2 + k2 + 2k + 1 +k4 + 2k3 + k2

= k4 + 2k3 + 3k2 + 2k + 1

= (k2+k+1)2

= [k(k+1)+1]2 là số chính phương lẻ.

Tiến Hoàng Minh
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
27 tháng 1 2022 lúc 0:54

Gọi 2 số chính phương liên tiếp là \(a^2\) và \(\left(a+1\right)^2\)

Do a, a + 1 là 2 số tự nhiên liên tiếp 

=> Luôn có 1 số chẵn, 1 số lẻ => \(a\left(a+1\right)\) chẵn

Có \(a^2+\left(a+1\right)^2+a^2.\left(a+1\right)^2\)

\(a^2+\left(a^2+2a+1\right)+a^2\left(a^2+2a+1\right)\)

\(a^4+2a^3+3a^2+2a+1\)

\(\left(a^2+a+1\right)^2=\left[a\left(a+1\right)+1\right]^2\)

=> đpcm

Khiêm Nguyễn Gia
Xem chi tiết
Lê Song Phương
2 tháng 8 2023 lúc 19:21

Gọi 2 số chính phương liên tiếp đó là \(n^2,\left(n+1\right)^2\). Ta có:

\(P=n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)

\(=n^2+n^2+2n+1+n^2\left(n^2+2n+1\right)\)

\(=n^4+2n^3+3n^2+2n+1\)

Ta có \(\dfrac{P}{n^2}=n^2+2n+3+\dfrac{2}{n}+\dfrac{1}{n^2}\)

\(=\left(n+\dfrac{1}{n}\right)^2+2\left(n+\dfrac{1}{n}\right)+1\)

\(=\left(n+\dfrac{1}{n}+1\right)^2\)

\(\Rightarrow P=\left[n\left(n+\dfrac{1}{n}+1\right)\right]^2=\left(n^2+n+1\right)^2=\left[n\left(n+1\right)+1\right]^2\)

 Dễ dàng kiểm chứng được \(2|n\left(n+1\right)\), do đó \(n\left(n+1\right)+1\) là số lẻ, suy ra đpcm.

 

 

 

Nguyễn Đức Trí
2 tháng 8 2023 lúc 19:44

Hai số chính phương liên tiếp là \(n^2;\left(n+1\right)^2\)

Theo đề ta có :

\(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)

\(=n^2+n^2+2n+1+n^4+2n^3+n^2\)

\(=\left(n^4+n^3+n^2\right)+\left(n^3+n^2+n\right)+\left(n^2+n+1\right)\)

\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=\left(n^2+n+1\right)^2\)

\(=\left[n\left(n+1\right)+1\right]^2\)

mà \(n\left(n+1\right)⋮2\) (là 2 số tự nhiên liên tiếp)

\(\Rightarrow n\left(n+1\right)+1\) là số lẻ

\(\Rightarrow\left[n\left(n+1\right)+1\right]^2\) là số chính phương lẻ

\(\Rightarrow dpcm\)

lutufine 159732486
Xem chi tiết
onepiece
Xem chi tiết
hue phuong cute
4 tháng 12 2016 lúc 6:50

goi 2 so chinh phuong lien tiep do la n2;(n+1)2

k2+(k+1)2 + k2.(k+1)2

=k2+k2+2k+1+k4+2k3+k2

=k4+3k2+2k3+2k+1 

=(k2+k+1)2

=[k(k+1)+1]2

hue phuong cute
4 tháng 12 2016 lúc 6:53

ket qua cuoi cung chung minh rang so do la so chinh phuong le.vi du ko dung:

25;36:25+36+25.36=71+900=971 ko la so chinh phuong le

Hòng
Xem chi tiết
DORAEMON
10 tháng 5 2016 lúc 10:33

Hai số chính phương liên tiếp lúc nào cũng là 1 chẵn và một lẻ. Nên tổng của chúng sẽ là số lẻ và tích của chúng  sẽ là số chẵn mà số lẻ cộng với số chẵn sẽ ra số lẻ. 

Park Ji Yeon
Xem chi tiết
Đình Hiếu
Xem chi tiết