Giải phương trình: \(\frac{x^2}{3}+\frac{48}{x^2}=10(\frac{x}{3}-\frac{4}{x})\)
Giải phương trình: \(\frac{x^2}{4}+\frac{900}{x^2}=2+48(\frac{10}{x}-\frac{x}{6})\)
ĐKXĐ: ...
Đặt \(\frac{10}{x}-\frac{x}{6}=a\Rightarrow a^2=\frac{100}{x^2}+\frac{x^2}{36}-\frac{10}{3}\Rightarrow\frac{100}{x^2}+\frac{x^2}{36}=a^2+\frac{10}{3}\)
\(\Rightarrow\frac{900}{x^2}+\frac{x^2}{4}=9a^2+30\)
Phương trình trở thành:
\(9a^2+30=2+48a\)
\(\Leftrightarrow9a^2-48a+28=0\Rightarrow\left[{}\begin{matrix}a=\frac{14}{3}\\a=\frac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{10}{x}-\frac{x}{6}=\frac{14}{3}\\\frac{10}{x}-\frac{x}{6}=\frac{2}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{x^2}{6}+\frac{14}{3}x-10=0\\\frac{x^2}{6}+\frac{2}{3}x-10=0\end{matrix}\right.\)
Giải phương trình: \(\frac{x^2}{9}+\frac{16}{x^2}=\frac{10}{3}(\frac{x}{3}-\frac{4}{x})\)
ĐKXĐ: ...
Đặt \(\frac{x}{3}-\frac{4}{x}=a\Rightarrow a^2=\frac{x^2}{9}+\frac{16}{x^2}-\frac{8}{3}\Rightarrow\frac{x^2}{9}+\frac{16}{x^2}=a^2+\frac{8}{3}\)
\(a^2+\frac{8}{3}=\frac{10}{3}a\Leftrightarrow3a^2-10a+8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{4}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{x}{3}-\frac{4}{x}=2\\\frac{x}{3}-\frac{4}{x}=\frac{4}{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-6x-12=0\\x^2-4x-12=0\end{matrix}\right.\)
Giải phương trình:
a) \(\left|x+1\right|+\left|x-1\right|=1+\left|x^2-1\right|\)
b) \(\frac{x^2}{3}+\frac{48}{x^2}=10\left(\frac{x}{3}-\frac{4}{x}\right)\)
c) \(2\sqrt[3]{x^2}-5\sqrt[3]{x}=3\)
a,Bạn xét 3 th
th1: x>=-1
th2: 1>x>-1
th3:x<=1
rồi trong từng th bạn bỏ dấu gttd và giải
b, \(\frac{x^2}{3}+\frac{48}{x^2}=10\left(\frac{x}{3}-\frac{4}{x}\right)\)
tương đương \(x^2+\frac{144}{x^2}=10\left(x-\frac{12}{x}\right)\)(nhân cả 2 vế với 3)
tương đương \(\left(x-\frac{12}{x}\right)^2+24-10\left(x-\frac{12}{x}\right)\)=0
đặt (x-12/x)=a
khi đó a^2-10a+24=0
giải a rồi tìm x thôi
c, đặt \(\sqrt[3]{x}\)=a
khi đó ta có 2a^2-5a=3
giải a rồi tìm x thôi
Chúc bạn học tốt!
Giải phương trình: \(\frac{2}{x^2+1}+\frac{4}{x^2+3}+\frac{6}{x^2+5}=\frac{4x^2+17}{x^2+6}\)
\(\frac{2}{x^2+1}+\frac{4}{x^2+3}+\frac{6}{x^2+5}=3+\frac{x^2-1}{x^2+6}\)
\(\Leftrightarrow\frac{x^2-1}{x^2+6}+1-\frac{2}{x^2+1}+1-\frac{4}{x^2+3}+1-\frac{6}{x^2+5}=0\)
\(\Leftrightarrow\frac{x^2-1}{x^2+6}+\frac{x^2-1}{x^2+1}+\frac{x^2-1}{x^2+3}+\frac{x^2-1}{x^2+5}=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(\frac{1}{x^2+6}+\frac{1}{x^2+1}+\frac{1}{x^2+3}+\frac{1}{x^2+5}\right)=0\)
\(\Rightarrow x=\pm1\)
C1: giải các phương trình sau:
a) 4x +5\(=\)1
b) -5x +2 \(=\)14
c) 6x -3 \(=\)8x +9
d) 7x -5 \(=\)13 -5x
e) 2-3x \(=\) 5x +10
f ) 13 - 7x \(=\) 4x -20
C2: giải các phương trình sau:
a) 2(7x +10) + 5 =3(2x -3) -9x
b) (x+1)(2x-3)=(2x-1)(x+5)
c) 2x + x(x+1)(x-1)= (x+1)(x2 - x +1)
d) (x-1)3 -x(x+1)2 = 5x(2 -x)-11(x+2)
C3: giải các phương trình sau:
a) \(\frac{2\left(x-3\right)}{4}-\frac{1}{2}=\frac{6x+9}{3}-2\)
b) \(\frac{2\left(3x+1\right)+1}{4}-5\frac{2\left(3x-1\right)}{5}-\frac{3x+2}{10}\)
c) \(\frac{x}{3}+\frac{x-2}{4}=0,5x-2,5\)
d) \(\frac{2x-4}{3}-2x=\frac{6x+3}{5}+\frac{1}{15}\)
\(\frac{1}{x^2+1}+\frac{1}{x^2+2}+\frac{1}{x^2+3}+\frac{1}{x^2+4}=0\)Giải phương trình .
Do \(x^2\ge0\Rightarrow x^2+1\ge1\Rightarrow\frac{1}{x^2+1}>0.\)
Tương tự \(\frac{1}{x^2+2};\frac{1}{x^2+3};\frac{1}{x^2}+4>0\)
=> Phương trình vô nghiệm
Giải phương trình: \(\frac{4x}{x^2+x+3}+\frac{5x}{x^2-5x+3}=-\frac{3}{2}\)
\(x=0\) không phải nghiệm
\(\frac{4}{x+1+\frac{3}{x}}+\frac{5}{x-5+\frac{3}{x}}=-\frac{3}{2}\)
Đặt \(x-5+\frac{3}{x}=a\)
\(\frac{4}{a+6}+\frac{5}{a}=-\frac{3}{2}\)
\(\Leftrightarrow8a+10\left(a+6\right)=-3a\left(a+6\right)\)
\(\Leftrightarrow3a^2+36a+60=0\Rightarrow\left[{}\begin{matrix}a=-2\\a=-10\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-5+\frac{3}{x}=-2\\x-5+\frac{3}{x}=-10\end{matrix}\right.\) \(\Leftrightarrow...\)
giải hệ phương trình\(\hept{\begin{cases}\frac{7}{x-y+2}-\frac{5}{x+y-1}=\frac{9}{2}\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{cases}}\)
\(\hept{\begin{cases}\frac{7}{x-y+2}-\frac{5}{x+y-1}=\frac{9}{2}\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{cases}}\)
Đặt \(a=\frac{1}{x-y+2};b=\frac{1}{x+y-1}\)ta được hệ phương trình:
\(\hept{\begin{cases}7a-5b=\frac{9}{2}\\3a+2b=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=\frac{1}{2}\end{cases}}}\)
Với \(\hept{\begin{cases}a=1\\b=\frac{1}{2}\end{cases}}\), ta được:
\(\hept{\begin{cases}\frac{1}{x-y+2}=1\\\frac{1}{x+y-1}=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y+2=1\\x+y-1=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
Vậy hệ phương trình có 1 nghiệm là x = 1 và y = 2
Giải phương trình: \(\frac{x+1}{2012}+\frac{x+2}{2011}+\frac{x+3}{2010}=\frac{x+4}{2009}+\frac{x+5}{2008}+\frac{x+6}{2007}\)
Ta có :
\(\frac{x+1}{2012}+\frac{x+2}{2011}+\frac{x+3}{2010}=\frac{x+4}{2009}+\frac{x+5}{2008}+\frac{x+6}{2007}\)
\(\left(\frac{x+1}{2012}+1\right)+\left(\frac{x+2}{2011}+1\right)+\left(\frac{x+3}{2010}+1\right)=\left(\frac{x+4}{2009}+1\right)+\left(\frac{x+5}{2008}+1\right)+\left(\frac{x+6}{2007}+1\right)\)
\(\Leftrightarrow\)\(\frac{x+2013}{2012}+\frac{x+2013}{2011}+\frac{x+2013}{2010}=\frac{x+2013}{2009}+\frac{x+2013}{2008}+\frac{x+2013}{2007}\)
\(\Leftrightarrow\)\(\left(x+2013\right).\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\right)=\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\right)\)
\(\Leftrightarrow\)\(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}=\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\)\(\left(1\right)\)
Mà \(\frac{1}{2012}< \frac{1}{2009}\)\(;\)\(\frac{1}{2011}< \frac{1}{2008}\)\(;\)\(\frac{1}{2010}< \frac{1}{2007}\)
\(\Rightarrow\)\(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}< \frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra không có giá trị nào của \(x\)thoả mãn đề bài
Vậy không có gía trị nào của \(x\)hay \(x\in\left\{\varnothing\right\}\)