Tìm GTNN của biểu thức:
\(A=2x^2+9y^2-6xy-6x-12y+2018\)
tìm GTNN của biểu thức: A= 2x2 + 9y2 - 6xy - 6x - 12y + 2004
tìm x và y sao cho biểu thức:
A= 2x^2+9y^2-6xy-6x-12y+2010 đạt GTNN, Tìm GTNN đó
Bài này đến lớp 8 còn làm đc (bọn chuyên).
Không khó đau, mình hd nhé:
Bạn thấy có 2x^2 và 9y^2 không
2x^2 không là bình phương của gì cả và không ghép được với các số sau nên tách ra.
Giải như bình thường.
\(x^2+x^2+\left(3y\right)^2-6xy-6x-12y+2010\)
\(\left(x-3y\right)^2-4x-12y+x^2-2x+2010\)
\(\left(x-3y\right)^2-4\left(x-3y\right)+4+x^2-2x+1+2005\)
\(\left(x-3y+2\right)^2+\left(x-1\right)^2+2005\ge2005\)
Tìm GTNN của biểu thức sau:
M=2x^2+9y^2-6xy-6x-12y+2028
N=x^2-4xy+5y^2+10x-22y+28
Giúp mk với
\(M=2x^2+9y^2-6xy-6x-12y+2028\\ =3\left(x^2-2xy+y^2\right)-\left(x^2+6x+9\right)+6\left(y^2-2y+1\right)+2025\\ =\left(x-y\right)^2-\left(x-3\right)^2+6\left(y-1\right)^2+2025\ge2025\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=3\\y=1\end{matrix}\right.\) (vô lí) nên dấu \("="\) ko thể xảy ra
\(N=x^2-4xy+5y^2+10x-22y+28\\ =\left(x^2+4y^2+25-4xy-20y+10x\right)+\left(y^2-2y+1\right)+2\\=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-2y=5\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
\(M=2x^2+9y^2-6xy-6x-12y+2028=\left(x+2\right)^2-6y\left(x+2\right)+9y^2+\left(x-5\right)^2+1999=\left(x+2-3y\right)^2+\left(x-5\right)^2+2019\ge1999\)
\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=\dfrac{7}{3}\end{matrix}\right.\)
\(N=x^2-4xy+5y^2+10x-22y+28=\left(x+5\right)^2-4y\left(x+5\right)+4y^2+\left(y-1\right)^2+2=\left(x+5-2y\right)^2+\left(y-1\right)^2+2\ge2\)
\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
tìm GTNN của đa thức sau A=2x2+9y2-6xy-6x-12y+2004
F = 2x2 + 9y2 - 6xy - 6x - 12y + 2024 Tìm GTNN của biểu thức ấy
Giúp mình vss
Nhân thêm 2 vào F là mọi việc sẽ ez bởi hằng đẳng thức cơ bản:D
TÌM GTNN CỦA BIỂU THỨC
\(2X^2+9Y^2-6XY-6X-12Y+1974\)
GIÚP MIK VỚI MIK ĐAG CẦN GẤP
#)Giải :
Đặt \(A=2x^2+9y^2-6xy-6x-12y+1974\)
\(\Rightarrow A=x^2+9y^2+4-6xy-12y+4x+x^2-10x+25+1945\)
\(\Rightarrow A=\left(x^2+9y^2+4-6xy-12y+4x\right)+\left(x^2-10x+25\right)+1945\)
\(\Rightarrow A=\left(x-3y+2\right)^2+\left(x-5\right)^2+1945\ge1945\)
Dâu ''='' xảy ra khi \(\hept{\begin{cases}x-5=0\\x-3y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}}\)
Vậy GTNN của A = 1945 tại x = 5 và y = 7/3
Cho
\(P=2x^2+9y^2-6xy-6x-12y+2018\)
Tìm x,y để P đạt GTNN
Ta có :
\(P=2x^2+9y^2-6xy-6x-12y+2018\)
\(P=\left(x^2+9y^2+4-6xy-12y+4x\right)+x^2-10x+25+1989\)
\(P=\left(x-3y+2\right)^2+\left(x-5\right)^2+1989\ge1989\)
\(\Rightarrow MinP=1989\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}\)
tìm GTNN của biểu thức 2x\(^2\) + 9y\(^2\) - 6xy - 6x - 12y + 2004
Tìm GTNN của: 2x2+9y-6xy-6x-12y+2004