Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
kim thủy
Xem chi tiết
Trương Chí Kiêng
10 tháng 8 2015 lúc 14:01

\(12\sqrt{\frac{4}{3}}-\frac{8+2\sqrt{2}}{3-\sqrt{2}}-\frac{4-6\sqrt{2}}{\sqrt{2}}+\frac{\sqrt{3}}{\sqrt{3}-2}\)

\(=12.\frac{2}{\sqrt{3}}-\frac{\left(3+\sqrt{2}\right)\left(8-2\sqrt{2}\right)}{9-2}-\frac{\sqrt{2}\left(4-6\sqrt{2}\right)}{2}+\frac{\sqrt{3}\left(\sqrt{3}-2\right)}{3-4}\)

\(=8\sqrt{3}-\left(4+2\sqrt{2}\right)-\left(2\sqrt{2}-6\right)+\left(-3-2\sqrt{3}\right)\)

\(=8\sqrt{3}-4-2\sqrt{2}-2\sqrt{2}+6-3-2\sqrt{3}\)

\(=6\sqrt{3}-4\sqrt{2}-1\)

 

hoangkunvai
Xem chi tiết
Thanh Tùng DZ
7 tháng 6 2019 lúc 16:28

với n >0, ta có :

\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=n+1-n=1\Rightarrow\frac{1}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}+\sqrt{n}\)

Gọi biểu thức đã cho là A

\(A=\frac{1}{-\left(\sqrt{2}-\sqrt{1}\right)}-\frac{1}{-\left(\sqrt{3}-\sqrt{2}\right)}+...+\frac{1}{-\left(\sqrt{8}-\sqrt{7}\right)}-\frac{1}{-\left(\sqrt{9}-\sqrt{8}\right)}\)

\(A=-\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-...-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{9}-\sqrt{8}}\)

\(A=-\left(\sqrt{2}+\sqrt{1}\right)+\left(\sqrt{3}+\sqrt{2}\right)-...-\left(\sqrt{8}+\sqrt{7}\right)+\left(\sqrt{9}+\sqrt{8}\right)\)

\(A=-\sqrt{1}+\sqrt{9}=2\)

shitbo
7 tháng 6 2019 lúc 16:39

\(\frac{1}{\sqrt{n}-\sqrt{n+1}}=\frac{\sqrt{n}+\sqrt{n+1}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=-\sqrt{n}-\sqrt{n+1}\)

Vũ Hạ Nguyên
Xem chi tiết
Trần Việt Linh
24 tháng 7 2016 lúc 20:08

\(\frac{4+\sqrt{2}-\sqrt{3}-\sqrt{6}+\sqrt{8}}{2+\sqrt{2}-\sqrt{3}}\)

\(=\frac{\left(\sqrt{4}+\sqrt{2}\right)-\left(\sqrt{3}+\sqrt{6}\right)+\left(\sqrt{4}+\sqrt{8}\right)}{2+\sqrt{2}-\sqrt{3}}\)  ( Tách 4 thành \(\sqrt{4}+\sqrt{4}\) )

\(=\frac{\sqrt{2}\left(\sqrt{2}+1\right)-\sqrt{3}\left(1+\sqrt{2}\right)+\sqrt{4}\left(1+\sqrt{2}\right)}{2+\sqrt{2}-\sqrt{3}}\)

\(=\frac{\left(\sqrt{2}-\sqrt{3}+2\right)\left(\sqrt{2}+1\right)}{2+\sqrt{2}-\sqrt{3}}\)

\(=\sqrt{2}+1\)

Yoona
Xem chi tiết
Minh Đức
24 tháng 7 2016 lúc 20:05

\(=\frac{2+\sqrt{2}-\sqrt{3}+2-\sqrt{6}+\sqrt{8}}{2+\sqrt{2}-\sqrt{3}}=1+\frac{\sqrt{2}\left(2+\sqrt{2}-\sqrt{3}\right)}{2+\sqrt{2}-\sqrt{3}}=1+\sqrt{2}\)

Vương Mạt Mạt
31 tháng 3 2020 lúc 14:57

Ta có:

\(\frac{4+\sqrt{2}-\sqrt{3}-\sqrt{6}+\sqrt{8}}{2+\sqrt{2}-\sqrt{3}}\)

\(=\frac{2+\sqrt{2}-\sqrt{3}+2-\sqrt{6}+\sqrt{8}}{2+\sqrt{2}-\sqrt{3}}\)

\(=1+\frac{\sqrt{2}(2+\sqrt{2}-\sqrt{3})}{2+\sqrt{2}-\sqrt{3}}\)

\(=1+\sqrt{2}\)

Vậy \(\frac{4+\sqrt{2}-\sqrt{3}-\sqrt{6}+\sqrt{8}}{2+\sqrt{2}-\sqrt{3}}=1+\sqrt{2}\)

Khách vãng lai đã xóa

Ta có

\(\frac{4+\sqrt{2}-\sqrt{3}-\sqrt{6}+\sqrt{8}}{2+\sqrt{2}-\sqrt{3}}=\frac{2+\sqrt{2}-\sqrt{3}+2-\sqrt{6}+\sqrt{8}}{2+\sqrt{2}-\sqrt{3}}\)

\(=1+\frac{\sqrt{2}(2+\sqrt{2}-\sqrt{3})}{2+\sqrt{2}-\sqrt{3}}=1+\sqrt{2}\)

\(\text{Vậy }\frac{4+\sqrt{2}-\sqrt{3}-\sqrt{6}+\sqrt{8}}{2+\sqrt{2}-\sqrt{3}}=1+\sqrt{2}\)

Khách vãng lai đã xóa
nguyen thi mai huong
Xem chi tiết
Thanh Tùng DZ
11 tháng 3 2020 lúc 20:05

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{4+\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)

Khách vãng lai đã xóa
Thám Tử THCS Nguyễn Hiếu
11 tháng 3 2020 lúc 20:08

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{4+\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}}\) = \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}\)

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}\) = \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}\)

Khách vãng lai đã xóa
nguyen thi mai huong
Xem chi tiết
Thám Tử THCS Nguyễn Hiếu
12 tháng 3 2020 lúc 9:24

=\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}\)=  \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)

Khách vãng lai đã xóa
o0o nhật kiếm o0o
12 tháng 3 2020 lúc 9:28

Ta có : 

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{4+\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(\sqrt{2}+1\right)}\)

\(=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)

Khách vãng lai đã xóa
nguyễn thị oanh
Xem chi tiết
Hoàng Lê Bảo Ngọc
13 tháng 8 2016 lúc 19:31

a) \(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}=\frac{\sqrt{6}+\sqrt{14}}{\sqrt{2}\left(\sqrt{6}+\sqrt{14}\right)}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}\)

b) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\sqrt{2}+1\)

 

HO YEN VY
Xem chi tiết
dinhquangchien
2 tháng 7 2018 lúc 7:57

333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333

Nhật Kim Anh
2 tháng 7 2018 lúc 8:00

2,251430954

✰๖ۣۜŠɦαɗøω✰
23 tháng 3 2020 lúc 7:15

Tham khảo nha bạn !

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\frac{\sqrt{2}.\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

Khách vãng lai đã xóa
HO YEN VY
Xem chi tiết
VN in my heart
Xem chi tiết