\(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}=\frac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}=\frac{\sqrt{6}}{2}\)
\(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}=\frac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}=\frac{\sqrt{6}}{2}\)
Rút gọn:
\(\frac{\sqrt{8}-\sqrt{6}}{2-\sqrt{3}}+\frac{\sqrt{8}+\sqrt{6}}{2+\sqrt{3}}\)
Rút gọn:
\(A=\sqrt{3+2\sqrt{2}}-\sqrt{6+2\sqrt{2}+2\sqrt{3}+2\sqrt{6}}\)
rút gọn M=\(\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-2\right)\sqrt{\sqrt{3}+2}\)
Rút gọn
a) \(A=\left(\frac{\sqrt{10}-\sqrt{5}}{\sqrt{8}-2}-\frac{\sqrt{90}}{3}\right).\frac{1}{\sqrt{5}}\)
b) \(B=\left(\frac{\sqrt{26}-\sqrt{13}}{1-\sqrt{2}}+\frac{\sqrt{18}-\sqrt{6}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{13}-\sqrt{6}}\)
c) \(C=\frac{\sqrt{10+2\sqrt{21}}-\sqrt{5-2\sqrt{6}}}{\sqrt{9-2\sqrt{14}}}\)
\(A=\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}\) rút gọn biểu thức
\(B=\left(\frac{1}{x-4}-\frac{1}{x+4\sqrt{x}+4}\right).\frac{x+2\sqrt{x}}{\sqrt{x}}\) rút gọn biểu thức
a)\(\frac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-\frac{6\sqrt{2}-4}{3-\sqrt{2}}\)
b)\(\sqrt{2-\sqrt{3}}-\sqrt{\frac{3}{2}}\)
c)\(\frac{\sqrt{30}-\sqrt{2}}{\sqrt{8-\sqrt{15}}}-\sqrt{8-\sqrt{49+8\sqrt{3}}}\)
d) \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
e)\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
f)\(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
g)\(\frac{\frac{\sqrt{2+\sqrt{3}}}{2}}{\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)
Rút gọn
\(A=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
\(B=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
Rút gọn biểu thức \(\frac{\sqrt{6+2\left(\sqrt{6}+\sqrt{3}+\sqrt{2}\right)}-\sqrt{6-2\left(\sqrt{6}-\sqrt{3}+\sqrt{2}\right)}}{\sqrt{2}}\)
Rút gọn:
A=\(\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}\)
B= \(\frac{1}{3-\sqrt{5}}-\frac{1}{\sqrt{5}+1}\)
C=( \(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\)):\(\frac{a+2}{a-2}\)(a>0;a#1)