\(\frac{\sqrt{8}-\sqrt{6}}{2-\sqrt{3}}+\frac{\sqrt{8}+\sqrt{6}}{2+\sqrt{3}}=\frac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\sqrt{3}}+\frac{\sqrt{2}\left(\sqrt{3}+2\right)}{2+\sqrt{3}}=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
\(\frac{\sqrt{8}-\sqrt{6}}{2-\sqrt{3}}+\frac{\sqrt{8}+\sqrt{6}}{2+\sqrt{3}}=\frac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\sqrt{3}}+\frac{\sqrt{2}\left(\sqrt{3}+2\right)}{2+\sqrt{3}}=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
a)\(\frac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-\frac{6\sqrt{2}-4}{3-\sqrt{2}}\)
b)\(\sqrt{2-\sqrt{3}}-\sqrt{\frac{3}{2}}\)
c)\(\frac{\sqrt{30}-\sqrt{2}}{\sqrt{8-\sqrt{15}}}-\sqrt{8-\sqrt{49+8\sqrt{3}}}\)
d) \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
e)\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
f)\(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
g)\(\frac{\frac{\sqrt{2+\sqrt{3}}}{2}}{\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)
Rút gọn
a) \(A=\left(\frac{\sqrt{10}-\sqrt{5}}{\sqrt{8}-2}-\frac{\sqrt{90}}{3}\right).\frac{1}{\sqrt{5}}\)
b) \(B=\left(\frac{\sqrt{26}-\sqrt{13}}{1-\sqrt{2}}+\frac{\sqrt{18}-\sqrt{6}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{13}-\sqrt{6}}\)
c) \(C=\frac{\sqrt{10+2\sqrt{21}}-\sqrt{5-2\sqrt{6}}}{\sqrt{9-2\sqrt{14}}}\)
\(A=\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}\) rút gọn biểu thức
\(B=\left(\frac{1}{x-4}-\frac{1}{x+4\sqrt{x}+4}\right).\frac{x+2\sqrt{x}}{\sqrt{x}}\) rút gọn biểu thức
Rút gọn
\(A=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
\(B=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
Rút gọn
\(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}\)
Rút gọn:
A=\(\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}\)
B= \(\frac{1}{3-\sqrt{5}}-\frac{1}{\sqrt{5}+1}\)
C=( \(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\)):\(\frac{a+2}{a-2}\)(a>0;a#1)
\(\left(5+4\sqrt{2}\right)\left(3+2\sqrt{1+\sqrt{2}}\right)\left(3-2\sqrt{1+\sqrt{2}}\right)\\ \\ \\ \sqrt{\frac{9}{4}-\sqrt{2}}\\ \\ \\ Sosanh2\sqrt{27}va\sqrt{147}\\ \\ \\ 2\sqrt{15}va\sqrt{59}\\ \\ \\ 2\sqrt{2}-1va2\\ \\ \\ \frac{\sqrt{3}}{2}va1\\ \\ \\ -\frac{\sqrt{10}}{2}va-2\sqrt{5}\\ \\ \\ \sqrt{6}-1va3\\ \\ \\ 2\sqrt{5}-5\sqrt{2}va1\\ \\ \\ \frac{\sqrt{8}}{3}va\frac{3}{4}\\ \\ \\ -2\sqrt{6}va-\sqrt{23}\\ \\ \\ 2\sqrt{6}-2va3\\ \\ \\ \sqrt{111}-7va4\)
Xếp theo thứ tự tăng dần: \(21,2\sqrt{7},15\sqrt{3},-\sqrt{123}\) ; \(28\sqrt{2},\sqrt{14},2\sqrt{147},36\sqrt{4}\)
giảm dần: \(6\sqrt{\frac{1}{4}},4\sqrt{\frac{1}{2}},-\sqrt{132},2\sqrt{3},\sqrt{\frac{15}{5}}\); \(-27,4\sqrt{3},16\sqrt{5},21\sqrt{2}\)
1. Tính:
a) \(\sqrt{243}-\frac{1}{2}\sqrt{12}-2\sqrt{75}+\sqrt{27}\)
b) \(\frac{2\sqrt{3}-3\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\frac{5}{1+\sqrt{6}}-6\sqrt{\frac{1}{6}}\)
2. Rút gọn: \(\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)
a) \(\sqrt{2}+\frac{1}{\sqrt{5+2\sqrt{6}}}+\frac{2}{\sqrt{8+2\sqrt{15}}}\)
b) \(\frac{\sqrt{8}+3}{\sqrt{17-3\sqrt{32}}}+\frac{3+2\sqrt{5}}{\sqrt{29-12\sqrt{5}}}-\frac{1}{\sqrt{12+2\sqrt{35}}}\)
c) \(\left(\frac{15}{3-\sqrt{2}}-\frac{2}{1-\sqrt{3}}+\frac{3}{\sqrt{3}-2}\right):\sqrt{28+10\sqrt{3}}\)
Giúp mình bài này nhé, mình đang cần gấp mọi người ơi :<