tính 1/x - 1/y , biết rằng x,y khác 0 và x-y=xy
giup minh vs cac pan oi
dug tick"et" cho
cho x,y,z khác 0 thỏa mãn (x^2+1)(y^2+4)(z^2+9)=48xyz . Tính giá trị biểu thức C=(x^3+y^3+z^3)/(x+y+z)^3
cac bạn giúp mik vs mik tick cho ạ
\(\left(x-1\right)^2\ge0\Rightarrow x^2-2x+1\ge0\Rightarrow x^2+1\ge2x\)
\(\left(y-2\right)^2\ge0\Rightarrow y^2-4y+4\ge0\Rightarrow y^2+4\ge4y\)
\(\left(z-3\right)^2\ge0\Rightarrow z^2-6z+9\ge0\Rightarrow z^2+9\ge6z\)
Do đó: \(\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)\ge2x.4y.6z=48xyz\)
Dấu "=" xảy ra khI: \(\hept{\begin{cases}x-1=0\\y-2=0\\z-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}}\)
Vậy \(C=\frac{1^3+2^3+3^3}{\left(1+2+3\right)^3}=\frac{6^2}{6^3}=\frac{1}{6}\)
Chúc bạn học tốt.
Đề sai rồi em, đề đúng phải là:
\(ab\left(x^2+y^2\right)+xy\left(a^2+b^2\right)=ab\)
Vế phải em thiếu a
Chứng minh rằng không tồn tại 2 số tự nhiên x , y khác 0 sao cho x 2 y và x y 2 là số chính phương ai nhanh tặng ngay 1 tick nhớ đúng nữa nha
1. Cho đa thức f(x)=mx^2+7n. Biết 4m+7n=0. Chứng minh rằng: Đa thức f(x) có nghiệm
2. Tính P=(1+x/y)*(1+z/x)*(1+z/y). Biết x+y+z=0 và x,y,z #0
3. Tính Q= 5.y^10-y^15+2016. Biết (x+1)^2016+(y-1)^2018=0
1.4m+7n=0
=>4m=-7n
=>mx2-4m=0
=>m(x2-4)=0
=>m=0 hoặc x=2 hoặc x=-2
a)Cho x và y là hai số thực thoã mãn 3x-=1 chứng minh rằng : 5^2-^2<5/4
b)Cho x khác y ; x khác -y;y khác 0 thoã mãn y/x+y + 2y^2/x^2+y^2 + 4y^4/x^4+y^4 + 8y^8/x^8-y^8=2021 tính giá trị x/y
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn. Viết đề như trên khó theo dõi quá.
Chứng minh rằng không tồn tại 2 số tự nhiên x , y khác 0 sao cho x^2+y và x+y^2 là số chính phương ?
ai nhanh tặng ngay 1 tick ! nhớ đúng nữa nha !
Giả sử \(x>y\)
Ta có: \(x^2< x^2+y< x^2+x< x^2+x+1=\left(x+1\right)^2\)
\(\Rightarrow x^2+y\)không phải số nguyên
=> Không tồn tại x, y thỏa mãn (ĐPCM)
Cho các số thục x,y thỏa mãn x khác y , x khác 0, y khác 0.Chung minh rằng:1/(x-y)^2+1/x^2+1/y^2 => 4/xy
cho các số thực x,y,z khác 0 thỏa mãn
x/2023x+y+z+t = y/x+2023y+z+t = z/x+y+2023z+t = t/x+y+z+2023t
chứng minh rằng biểu thức:
P =(1+ x+y/z+t)^2023 + (1 + y+z/x+y)^2023 + (1 + t+x/y+z)^2023 + (1 + t+x/y+z)^2023
giúp mik vs;-;
Chứng minh biểu thức thế nào em?
Cho x+y =1 và xy khác 0. Chứng minh rằng xy3−1−yx3−1+2(x−y)x2y2+3=0xy3−1−yx3−1+2(x−y)x2y2+3=0.