Cho a/b,c/d thuộc Q với b;d > 0 và giả sử a/b < c/d chứng minh
a) ad < bc b) a/b < a+c/b+ d
Cho a;b;c;d thuộc n* thỏa mãn ab=cd
Chứng minh:\(A=a^n+b^n+c^n+d^n\)là 1 hợp số với mọi n thuộc N
Cho \(M=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{b+c+d}+\frac{d}{a+c+d}\) với a,b,c,d thuộc N*
Chứng minh M không nhận giá trị là số tự nhiên
Ta có: \(a,b,c,d\in N^{\times}\)nên:
\(\Rightarrow a+b+c< a+b+c+d\)
\(\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
Tương tự ta có: \(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)
Và: \(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)
Và: \(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)
\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)
Lại có: \(a,b,c,d\in N^{\times}\) nên:
\(\Rightarrow a+b+c>a+b\)
\(\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)
Tương tự ta có: \(\frac{b}{a+b+d}< \frac{b}{a+b}\)
Và: \(\frac{c}{a+c+d}< \frac{c}{c+d}\)
Và: \(\frac{d}{b+c+d}< \frac{d}{c+d}\)
\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)
Vậy \(1< M< 2\) nên \(M\) không phải số tự nhiên.
Cho A=\(\dfrac{28a^2-3ab-2008b^2}{11c^2-9cd-1985d^2}\)
Tính A biết: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}\)với a,b,c,d thuộc R và a,b,c,d khác 0
Ta có : \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\) \(\Rightarrow a=b=c=d\)
Thay \(b=a;c=a;d=a\) vào biểu thức \(A\) ta có :
\(A=\dfrac{28a^2-3ab-2008b^2}{11c^2-9cd-1985d^2}=\dfrac{28a^2-3a^2-2008a^2}{11a^2-9a^2-1985a^2}=\dfrac{a^2\left(28-3-2008\right)}{a^2\left(11-9-1985\right)}=\dfrac{-1983}{-1983}=1\)
Vậy \(A=1\)
a, cho \(\frac{a}{b}=\frac{c}{d}\)với a ko= b, c ko= d và a.b.c.d ko =0. C/m:\(\frac{a}{a-b}=\frac{c}{c-d}\)
b, tìm x thuộc N để A=\(\frac{\sqrt{x+2}}{\sqrt{x-3}}\)là số nguyên?
Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)(Theo tính chất của dãy tỉ số bằng nhau)
\(\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
cho ad = bc ( a , b , c ,d thuộc Q* )
cmr : a , a+b/b = c+d/d
b. a-b/b = c-d/d
\(ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1;\frac{a}{b}-1=\frac{c}{d}-1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d};\frac{a-b}{b}=\frac{c-d}{d}\)
a) \(\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)(đúng)
b)\(\Leftrightarrow\frac{a}{b}-1=\frac{c}{d}-1\Leftrightarrow\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)(đúng)
\(\text{cho a,b,c,d thuộc z thỏa mãn a+b=c+d.chứng minh rằng a^2+b^2+c^2+d^2 l}\)cho a,b,c,d thuộc z thỏa mãn a+b=c+d.chứng minh rằng a^2+b^2+c^2+d^2
Cho M=\(\frac{a+b}{a+b+c}+\frac{b+c}{b+c+d}+\frac{c+d}{c+d+a}+\frac{d+a}{d+a+b}\)
(a,b,c,d thuộc N*)
cmr m thuộc Z (2<A<3)
Cho P = a2 + a. Với a thuộc N
a) Hãy viết P thành tích
b) Với a thuộc N, CMR P chia hết cho 2 ( hoặc P là số chẵn )
c) Với a thuộc N, CMR a2 + 2017a chia hết cho 2
d) Cho M = a2 + b2 + c2 + d2 + a + b + c + d. Với a, b, c, d thuộc N. CMR M chia hết cho 2
e) Cho N = a2 + b2 + c2 + d2 + a + b + c + d và a + b + c + d 20162017. Với a, b, c, d thuộc N. CMR N chia hết cho 2
1. cho a;b thuộc Z; a<b ; b>0. Chứng minh rằng a/b < a+2009/b+2009
2. cho a;b;c;d;e;g thuộc Z biết b;d;g>0 và ad-bc=2009 và cg-de=2009
a, so sánh a/b ; c/d; e/g
b, so sánh c/d với a+e/b+g
3. Cho a;b;c;d thuộc Z sao cho a>b>c>d>0. nếu 0<a1<a2<......<a9 thì \(\frac{a_1+a_2+a_3+.......+a_9}{a_3+a_6+a_9}\)< 3