Cho a,b là số hữu tỉ dương. So sánh : a/b và a+m/b+m
cho các số hữu tỉ x=a/b,y=c/d và z=m/n. biết ad-bc=1 cn-dm=1(b,d là các số nguyên dương)
a, So sánh các số x;y;z
b,So sánh y với t, biết t= a+m/b+n(b+n khác 0)
Xem lại đề có thiếu câu hỏi không nha bạn
Cho số hữu tỉ
x= \(\dfrac{a+5}{-12}\)
a, Khi a = -2 thì x là số hữu tỉ dương hay âm
b, Khi a= -9 thì x là số hữu tỉ dương hay âm
c , Tìm giác trị của a để x= 0
d, So sánh x với -1,8 khi a= -37
a) Khi a = -2 thì x = (-2 + 5)/(-12) = 3/(-12) = -1/4
Vậy x là số hữu tỉ âm
b) Khi a = -9 thì x = (-9 + 5)/(-12) = (-4)/(-12) = 1/3
Vậy x là số hữu tỉ dương
c) Để x = 0 thì a + 5 = 0
a = -5
d) Khi a = -37 thì
x = (-37 + 5)/(-12)
= (-32)/(-12)
= 8/3 > 0
Mà 0 > -1,8
Vậy x > -1,8 khi a = -37
a ) Cho am = an ( a là số hữu tỉ ; m, n là số tự nhiên).Tìm số m,n
b) Cho am > an (a là số hữu tỉ , a > 0 ; m , n là số tự nhiên ) . So sánh m, n
So sánh số hữu tỉ a/b (a,b,m thuộc Z,m > 0) với số 0 khi a, b cùng dấu và khi a,b khác dấu
Bài 1: Cho số hữu tỉ x = \(\frac{a-4}{7}\) . Tìm a để :
a) x là số âm
b) x là số dương
c) x ko là số âm cũng ko là số dương.
Bài 2 : Cho a, b thuộc Z và b\(\ne0\) . So sánh 2 số hữu tỉ \(\frac{a}{b}\) và \(\frac{a+2016}{b+2016}\) . mk cần gấp lắm.
nek sao bn kì z? giúp ng ta thì giúp cho đàng hoàng nhá. bn ns dài lắm lak xog ak???
Câu 1:Cho các số hữu tỉ x =a/b; y = c/d ; z = m/n. Biết ad-bc = 1; cn - dm = 1 ; b,d,n > 0
a) Hãy so sánh các số x,y,z
b) So sánh y với t biết t = a+m /b+n với b+n khác 0
Câu 2: Cho 6 số nguyên dương a<b<c<d<m<n
Chứng minh rằng a+c+m / a+b+c+d+m+n < 1/2.
Cho các số hữu tỉ x=\(\dfrac{a}{b}\) ; y=\(\dfrac{c}{d}\) và z = \(\dfrac{m}{n}\) . Biết ad -bc =1 , cn-bm=1
a) Hãy so sánh các số x,y,z
b) So sánh y với t biết t = \(\dfrac{a+m}{b+m}\) với b + n \(\ne\)0
(Sửa \(cn-bm\rightarrow cn-dm\))
Ta có :
\(\left\{{}\begin{matrix}ad-bc=1\\cn-dm=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}ad=1+bc\\cn=1+dm\end{matrix}\right.\)
\(\dfrac{x}{y}=\dfrac{a}{b}.\dfrac{d}{c}=\dfrac{ad}{bc}=\dfrac{1+bc}{bc}=1+\dfrac{1}{bc}>1\left(bc>0\right)\)
\(\Rightarrow x=\dfrac{a}{b}>y=\dfrac{c}{d}\left(2\right)\)
\(\dfrac{y}{z}=\dfrac{c}{d}.\dfrac{n}{m}=\dfrac{cn}{dm}=\dfrac{1+dm}{dm}=1+\dfrac{1}{dm}>1\left(dc>0\right)\)
\(\Rightarrow y=\dfrac{c}{d}>z=\dfrac{m}{n}\left(2\right)\)
\(\left(1\right);\left(2\right)\Rightarrow x>y>z\)
cho các số hữu tỉ x=a/b, y=c/d, z=m/n
biết ad-bc=1, cn-dm=1 và b,d.n>0
a) Hãy so sánh các số x, y, z
b) So sánh y với t biết t= a+m/b+n
Vì b,d,n > 0 nên Ta có:
ad - bc = 1 \(\Rightarrow\) ad > bc \(\Rightarrow\) \(\frac{a}{b}>\frac{c}{d}\) (1)
cn - dm = 1 \(\Rightarrow\) cn > dm \(\Rightarrow\) \(\frac{c}{d}>\frac{m}{n}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}>\frac{c}{d}>\frac{m}{n}\).
Vậy x > y > z
Cho a,a là 2 số hữu tỉ dương.
so sánh \(\frac{a}{b}\)và \(\frac{a+2}{b+2}\). Cho 2 ví dụ cụ thể
Xét a(b + 2) và (a + 2)b
Ta có: a(b + 2) - (a + 2)b = 2a - 2b
- Nếu a>b thì \(\frac{a}{b}>\frac{a+2}{b+2}\)
- Nếu a<b thì \(\frac{a}{b}< \frac{a+2}{b+2}\)
Ví dụ: \(\frac{1}{5}\)và \(\frac{3}{7}\). Ta có: \(\frac{1}{5}< \frac{3}{7}\)
\(\frac{10}{7}\)và \(\frac{12}{9}\). Ta có: \(\frac{10}{7}>\frac{12}{9}\)