tìm max
D=1982-2x2-y2+2xy-10x+14y
tìm max
\(D=1983-x^2-3y^2+2xy-10x+14y\)
Cho biểu thức M=\(x^2+3y^2+10x-14y-2xy=11\)
Tìm Min,Max của A=x-y
Lời giải:
\(x^2+3y^2+10x-14y-2xy=11\)
$\Leftrightarrow (x^2-2xy+y^2)+2y^2+10x-14y=11$
$\Leftrightarrow (x-y)^2+10(x-y)+25+(2y^2-4y+2)=38$
$\Leftrightarrow (x-y+5)^2+2(y-1)^2=38$
$\Rightarrow (x-y+5)^2=38-2(y-1)^2\leq 38$
$\Rightarrow -\sqrt{38}\leq x-y+5\leq \sqrt{38}$
$\Leftrightarrow -\sqrt{38}-5\leq x-y\leq \sqrt{38}-5$
Vậy $A_{\min}=-\sqrt{38}-5$ và $A_{\max}=\sqrt{38}-5$
Tìm max
x^2-3y^2-2xy+10x+14y-18
\(x^2-3y^2-2xy+10x+14y-18\)
\(=x^2-2xy+y^2-2x^2+10x-4y^2+14y-18\)
\(=x^2-2xy+y^2-2\left(x^2-5x+25\right)-4\left(y^2-\frac{7}{2}y+\frac{49}{16}\right)+\frac{177}{4}\)
\(=\left(x-y\right)^2-2\left(x-5\right)^2-4\left(y-\frac{7}{4}\right)^2+\frac{177}{4}\)
.....
tìm max
C=1983-x2-3y2+2xy-10x+14y
\(C=1983-x^2-3y^2+2xy-10x+14y\)
\(C=-\left(x^2+3y^2-2xy+10x-14y-1983\right)\)
\(C=-\left(x^2-2xy+y^2+2y^2+10x-14y-1983\right)\)
\(C=-\left[\left(x-y\right)^2+2\cdot\left(x-y\right)\cdot5+25+2y^2-4y+2-2010\right]\)
\(C=-\left[\left(x-y+5\right)^2+2\left(y-1\right)^2-2010\right]\)
\(C=2010-\left[\left(x-y+5\right)^2+2\left(y-1\right)^2\right]\le2010\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=1\end{matrix}\right.\)
tìm max A biết
-x2-3y2-2xy+10x+14y-18; lúc đó giá trị của x, y là bo nhiêu?
-2A=2x2+6y2+4xy-20x-28y+36
=(x2+4xy+4y2)+(x2-20x+100)+2(y2-14y+49)-162
=(x+2y)2+(x-10)2+2(y-7)2-162\(\ge\)-162
=> A\(\le81\)
Dấu "=" xảy ra khi
tìm MIN:
\(D=\frac{10}{1983-x^2-3y^2+2xy-10x+14y}\)
Xét mẫu: \(^{-\left(x^2-2xy+10x+3y^2-14y-1983\right)}\)
\(=-\left(x^2-2x.\left(y-5\right)+\left(y-5\right)^2-\left(y-5\right)^2+3y^2-14y-1983\right)\)
\(=-\left(\left(x-y+5\right)^2-\left(y^2-10y+25\right)+3y^2-14y-1983\right)\)
\(=-\left(\left(x-y+5\right)^2-y^2+10y-25+3y^2-14y-1983\right)\)
\(=-\left(\left(x-y+5\right)^2+2y^2-4y-2008\right)\)
\(=-\left(\left(....\right)^2+2.\left(y^2-2y+1\right)-2010\right)\)
\(=\left(\left(...\right)^2+2.\left(y-1\right)^2-2010\right)\)
Mình không biết là đề có sai sót gì không, theo mình thì đến đây chứng minh được cái trong ngoặc >= 0 nhưng cái này lại >= -2010, bạn cứ soát lại nha nhỡ đâu có chỗ mình nhầm. Cách làm này là đúng, k cho mình nha
Tìm Max:
A=1983-x^2-3y^2+2xy-10x+14y
Giup mình voi nha. Mk tick cho nhe
Ta có:
\(A=1993-x^2-3y^2+2xy-10x+14y\\ =2020-\left(x^2-2xy+y^2\right)-10\left(x-y\right)-25-\left(2y^2-4y+2\right)\\ =2020-\left(x-y-5\right)^2-2\left(y-1\right)^2\)
Với mọi x; y thì \(2020-\left(x-y-5\right)^2-2\left(y-1\right)^2\ge2020\)
Để A=2020 thì
\(\left\{{}\begin{matrix}x-y=5\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=1\end{matrix}\right.\)
Vậy...
Tìm GTLN : -x^2- 3y^2-2xy+10x+14y-18
Đặt \(A=-x^2-3y^2-2xy+10x+14y-18\)
Ta có : \(-A=x^2+3y^2+2xy-10x-14y+18\)
\(-A=\left(x^2+2xy+y^2\right)+2y^2-10x-14y+18\)
\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)\times5+25\right]+2y^2-4y+7\)
\(-A=\left(x+y-5\right)^2+2\left(y^2-2y+1\right)+5\)
\(-A=\left(x+y-5\right)^2+2\left(y-1\right)^2+5\)
Mà \(\left(x+y-5\right)^2\ge0\forall x;y\in R\)
\(\left(y-1\right)^2\ge0\forall y\in R\Rightarrow2\left(y-1\right)^2\ge0\forall y\in R\)
\(\Rightarrow-A\ge5\)
\(\Leftrightarrow A\le-5\)
Dấu " = " xảy ra khi:
\(\hept{\begin{cases}x+y-5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}\)
Vậy Max A = - 5 khi ( x ; y ) = ( 4 ; 1 )
Tìm giá trị nhỏ nhất:
a/ P=x2+y2-6x-2y+17
b/ Q=x2+xy+y2-3x-3y+999
c/ R=2x2+2xy+y2-2x+2y+15
d/ S=x2+26y2-10xy+14x-76y+59
e/ T=x2-4xy+5y2+10x-22y+28
Giúp mình với nha!