Cho a,b là hai số khác 0 và A = \(\frac{a}{b}+\frac{b}{a}\)
Chứng minh: \(A^2-3A+2\ge0\)
Mọi người giúp mình với ạ, chiều nay mình phải làm kiểm tra rồi.
\(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\) với a>0 và a khác 0
Mọi người giúp mình giải câu này với
mai mình kiểm tra rồi T.T
Hầu hết các dạng bài này bạn chỉ cần quy đồng là ra ngay nhé :)
Điều kiện xác định : \(0< x\ne1\)
\(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}\)
Ta có : \(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
\(M=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(M=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)
\(M=\frac{\sqrt{a}-1}{\sqrt{a}}\)
\(M=1-\frac{1}{\sqrt{a}}\)
so sánh số hữu tỷ \(\frac{a}{b}\)(a,b thuộc Z; b khác 0)với số 0trong các trường hợp sau)
a, a,b cùng dấu
b, a,b khác dấu
mọi người ơi giúp mình với chiều nay mk phải nộp bài rồi
Cho a,b,c \(\in\)Q đôi một khác nhau. Chứng minh :
\(\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\) là số hữu tỉ.
Mọi người ai biết làm bài này giúp mình với nha. mình cảm ơn ạ.
Đặt x = a - b ; y = b - c ; z = c - a thì x + y + z = a - b + b - c + c - a = 0
Ta có : \(\sqrt{\frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{y^2}}\)
\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{y})^2-2(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx})\)
\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2-2\frac{x+y+z}{xyz}\)
\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2=(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a})^2(đpcm)\)
Chúc bạn học tốt
Mọi người ơi, ai còn on giúp mình với!. Mai đi học mình phải cần rồi!! (heart)
Cho a,b,c,d là bốn số khác 0 và thỏa mãn: a.c= b^2; b.d= c^2
Chứng minh rằng: a^3+b^3+c^3/ b^3+ c^3+ d^3 = a/d
**************** THANK YOU VERY MUCH ***************
quá đơn giản
cho 5 k giải cho
(mình trong đội tuyển toán đó nhe nên làm theo đi)
Giúp mình với mọi người, mình biết cách chứng minh rồi nhưng chưa hiểu lắm, mọi người làm lúc nào cũng được.
Chứng minh rằng: \(\frac{a^n+b^n+c^n}{3}\ge\left(\frac{a+b+c}{3}\right)^n,\forall a,b,c>0;n\in N\)
Sử dụng bất đẳng thức AM-GM ta có:
\(\hept{\begin{cases}a^n+\left(n-1\right)\left(\frac{a+b+c}{3}\right)^n\ge n\sqrt[n]{a^n\left(\frac{a+b+c}{3}\right)^{n\left(n-1\right)}}=n\left(\frac{a+b+c}{3}\right)^{n-1}a\\b^n+\left(n-1\right)\left(\frac{a+b+c}{3}\right)^n\ge n\sqrt[n]{b^n\left(\frac{a+b+c}{3}\right)^{n\left(n-1\right)}}=n\left(\frac{a+b+c}{3}\right)^{n-1}b\\c^n+\left(n-1\right)\left(\frac{a+b+c}{3}\right)^n\ge n\sqrt[n]{c^n\left(\frac{a+b+c}{3}\right)^{n\left(n-1\right)}}=n\left(\frac{a+b+c}{3}\right)^{n-1}c\end{cases}}\)
_________________________________________________________________________________________
\(\Rightarrow\left(a^n+b^n+c^n\right)\ge n\left(\frac{a+b+c}{3}\right)^{n-1}\left(a+b+c\right)-3\left(n-1\right)\left(\frac{a+b+c}{3}\right)^n\)\(=3\left(\frac{a+b+c}{3}\right)^n\)
Cho a,, là các số thực khác 0.Tìm các số thực x,y,z khác 0 thỏa mãn:
\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zc}{cx+az}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}.\)
giúp mình vs mọi người ơi mai phải nộp rồi
=> \(\frac{ay+bx}{xy}=\frac{bz+cy}{yz}=\frac{cx+az}{zc}\) <=> \(\frac{a}{x}+\frac{b}{y}=\frac{b}{y}+\frac{c}{z}=\frac{c}{z}+\frac{a}{c}\)
<=> \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=k\)=> \(x=ak\) ; \(y=bk\) ; \(z=ck\) (2)
Gọi giả thiết là (1) Thay 2 vào 1 ta đc : \(k=\frac{1}{2}\)
=> Kết hợp k=1/2 với 2 ta được: a=x/2 ; b=y/2 và c=z/2
bạn lầu trên ơi, a/x=b/y=c/x=k thì x=a/k chứ bạn đâu phải x=ak đâu.
M = (a + b) - \(\sqrt{\frac{\left(a^2+1\right)\left(b^2+1\right)}{c^2+1}}\)với a,b,c > 0 và ab + bc + ca = 1
Mong mọi người giải nhanh giúp mình, tối nay đã phải nộp rồi
Theo đề bài ta có: ab + bc + ca = 1
\(\Rightarrow a^2+1=a^2+ab+ac+bc=\left(a+b\right)\left(a+c\right)\)(1)
\(\Rightarrow b^2+1=b^2+ab+bc+ac=\left(a+b\right)\left(b+c\right)\)(2)
\(\Rightarrow c^2+1=c^2+ab+bc+ac=\left(a+c\right)\left(b+c\right)\)(3)
Từ (1), (2) và (3) \(\Rightarrow\left(a+b\right)-\sqrt{\frac{\left(a^2+1\right)\left(b^2+1\right)}{c^2+1}}\)
\(=\left(a+b\right)-\sqrt{\frac{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)}{\left(a+c\right)\left(b+c\right)}}\)
\(=\left(a+b\right)-\sqrt{\left(a+b\right)^2}\)
\(=\left(a+b\right)-\left(a+b\right)=0\)
(Nhớ k cho mình với nhé!)
thế 1=ab+ac+bc vào biểu thức dước căn rồi phân tích thành nhân tử khai phương được a+b.dap so là 0
a,Chứng minh rằng với mọi số tự nhiên n lớn hơn 3 thì tổng:
\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)không thể là một số nguyên
giúp mình vs nha chiều nay mình phải nộp rồi
Ta có :
\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)
\(S=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{n^2-1}{n^2}\)
\(S=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{n^2-1}{n^2}\)
\(S=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{n^2}{n^2}-\frac{1}{n^2}\)
\(S=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{n^2}\)
\(S=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)
Vì từ \(2\) đến \(n\) có \(n-2+1=n-1\) số \(1\) nên :
\(S=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< n-1\) \(\left(1\right)\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\) ta lại có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(A< 1-\frac{1}{n}< 1\)
\(\Rightarrow\)\(S=n-1-A>n-1-1=n-2\)
\(\Rightarrow\)\(S>n-2\) \(\left(2\right)\)
Từ (1) và (2) suy ra :
\(n-2< S< n-1\)
Vì \(n>3\) nên \(S\) không là số tự nhiên
Vậy \(S\) không là số tự nhiên
Chúc bạn học tốt ~
Cho a,b>0: a+b=2. Tìm GTNN của:
P = \(\frac{2a^2+3b^2}{2a^3+3b^3}+\frac{3a^2+2b^2}{3a^3+2b^3}\)
Mình nghĩ là chứng minh mỗi phân thức <= một biểu thức nào đó theo phương pháp biến đổi tương đương rồi cộng lại, nhưng nhiều ngày rồi vẫn chưa ra kết quả. Mong mọi người giúp đỡ.