Tìm a và b biết \(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}=4-\sqrt{b}-\sqrt{a}\)
A=\(\left(\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{a}{b-a}\right)\) : \(\left(\frac{a}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{a}}{a+b+2\sqrt{ab}}\right)\)
a, rút gọn
b, tìm a, b biết khi \(\frac{a}{b}=\frac{1}{4}\) thì A=1
Tìm ĐKXĐ và rút gọn biểu thức
\(A=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)
\(B=\left(\frac{2\sqrt{x}-x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\frac{x-1}{x+\sqrt{x}+1}\)
\(C=\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\)
\(D=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
CM rằng GT của bthức A ko phụ thuộc vào a
Tìm x để C = 4
Tìm x sao cho D < -1
a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)
c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
Cho A=\(\frac{\left(\frac{1}{\sqrt{a}-\sqrt{a-b}}+\frac{1}{\sqrt{a}+\sqrt{a+b}}\right)}{1+\frac{\sqrt{a+b}}{\sqrt{a-b}}}\)
a) Đơn giản biểu thức A
b) Tìm b biết |A| = A
\(A=\frac{\left(\frac{1}{\sqrt{a}-\sqrt{a-b}}+\frac{1}{\sqrt{a}+\sqrt{a+b}}\right)}{1+\frac{\sqrt{a+b}}{\sqrt{a-b}}}\)
\(=\left(\frac{1}{\sqrt{a}-\sqrt{a-b}}+\frac{1}{\sqrt{a}+\sqrt{a+b}}\right):\left(1+\frac{\sqrt{a+b}}{\sqrt{a-b}}\right)\)
\(=\left(\frac{\sqrt{a}+\sqrt{a-b}}{b}+\frac{\sqrt{a}-\sqrt{a+b}}{-b}\right):\left(\frac{\sqrt{a-b}+\sqrt{a+b}}{\sqrt{a-b}}\right)\)
\(=\frac{\sqrt{a-b}+\sqrt{a+b}}{b}.\frac{\sqrt{a-b}}{\sqrt{a-b}+\sqrt{a+b}}\)
\(=\frac{\sqrt{a-b}}{b}\)
=.= hok tốt!!
1/ Rút gọn biểu thức:\(G=\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right)\div\frac{\sqrt{x}+1}{x}\)
2/ Cho biểu thức: \(M=x-\frac{2x-2\sqrt{x}}{\sqrt{x}-1}+\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1\)
a. Tìm ĐKXĐ
b. Rút gọn M
c. Tìm giá trị nhỏ nhất của M
3/ Chứng minh: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{a+b}|\)với \(a\ne0,b\ne0,a+b\ne0\)
4/ Biết a,b,c là số dương và ab + bc + ac =1. Hãy tính tổng:
\(M=a\sqrt{\frac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+b\sqrt{\frac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}+c\sqrt{\frac{\left(1+a^2\right)\left(1+b^2\right)}{1+c^2}}\)
Ai giải giúp mình bài 1 với bài 4 trước đi
\(P=\left(\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}\right)\sqrt{\frac{1}{a}-\frac{1}{b}}\)
\(=\left(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{a-b}-\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{a-b}\right).\sqrt{\frac{b-a}{ab}}\)
\(=\frac{a-2\sqrt{ab}+b-a-2\sqrt{ab}-b}{a-b}.\sqrt{\frac{b-a}{ab}}\)
\(=\frac{-4\sqrt{ab}}{a-b}.\sqrt{\frac{b-a}{ab}}\)\(=\frac{-4\sqrt{ab}}{2017-2018}.\sqrt{\frac{2018-2017}{ab}}\)
\(=4\sqrt{ab}.\sqrt{\frac{1}{ab}}\)\(=\sqrt{\frac{16ab}{ab}}\)\(=4\)
sao tổng lại lớn hơn hiệu
chứng minh câu đẳng thức
1)\(\frac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{b-a}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
2)\(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2=1\)
3)\(\frac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\frac{2b}{a-b}=1\)(a lớn hơn bằng 0,b lớn hơn bằng 0)
4)\(\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)=1-a\)(a lớn hơn bằng 0,a khác 1)
help me:<<<
1) \(VT=\frac{\sqrt{a}+\sqrt{b}}{2\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}-\sqrt{b}}{2\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2b}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)\(=\frac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{4\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}=VP\)(ĐPCM)
2) \(VT=\text{[}\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a+b-\sqrt{ab}\right)}{\left(\sqrt{a}+\sqrt{b}\right)}-\sqrt{ab}\text{]}.\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(a-b\right)^2}\)
\(=\frac{\left(a+b-\sqrt{ab}-\sqrt{ab}\right)\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(a-b\right)^2}\)\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(a-b\right)^2}=\frac{\left(a-b\right)^2}{\left(a-b\right)^2}=1=VP\)(ĐPCM)
4) \(VT=\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a=VP\)(ĐPCM)
bài 1: Cho biểu thức \(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\)
a, rút gọn biểu thức A
b, tìm a để A=1
bài 2 : cho biểu thức \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
a, tìm điều kiện của x để B có nghĩa
b, rút gọn
c, tính giá trị biểu thức B tại x =\(3+2\sqrt{3}\)
bài 3 cho biểu thức \(B=\left(\frac{1}{\sqrt{y}+1}-\frac{3\sqrt{y}}{\sqrt{y}-1}+3\right).\frac{\sqrt{y}+1}{\sqrt{y}+2}\)
a, tìm y để B có nghĩa và rút gọn B
b, tính giá trị của biểu thức B biết y = \(3+2\sqrt{2}\)
GIÚP MÌNH VỚI TỐI MAI ĐI HC RỒI
1,
\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)
\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)
\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)
\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)
Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)
2,
a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)
b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)
\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)
c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)
1,Trục căn thức ở mẫu, rút gọn: ( với \(x\ge0;x\ne1\))
a,\(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)
b,\(\frac{\sqrt{2}+1}{\sqrt{2}-1}\)
2,Chứng minh các đẳng thức sau:
a,\(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}=1\)
b,\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)
c,\(\left(\frac{\sqrt{a}}{\sqrt{a}+2}+\frac{\sqrt{a}}{\sqrt{a}-2}+\frac{4\sqrt{a}-1}{a-4}\right):\frac{1}{a-4}=-1\)
d,\(\frac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{b-a}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
Bài 1:
a)
\(\frac{\sqrt{2.3}+\sqrt{2.7}}{2\sqrt{3}+2\sqrt{7}}=\frac{\sqrt{2}(\sqrt{3}+\sqrt{7})}{2(\sqrt{3}+\sqrt{7})}=\frac{\sqrt{2}}{2}\)
b)
\(\frac{\sqrt{2}+1}{\sqrt{2}-1}=\frac{(\sqrt{2}+1)^2}{(\sqrt{2}-1)(\sqrt{2}+1)}=\frac{3+2\sqrt{2}}{2-1}=3+2\sqrt{2}\)
Bài 2:
a)
\(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}=\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}+\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}\)
\(=\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}=\sqrt{4}-\sqrt{1}=1\) (đpcm)
b)
\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{\frac{4+2\sqrt{3}}{2}}+\sqrt{\frac{4-2\sqrt{3}}{2}}\)
\(=\sqrt{\frac{(\sqrt{3}+1)^2}{2}}+\sqrt{\frac{(\sqrt{3}-1)^2}{2}}=\frac{\sqrt{3}+1}{\sqrt{2}}+\frac{\sqrt{3}-1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\) (đpcm)
c) Sửa đề:
\(\left(\frac{\sqrt{a}}{\sqrt{a}+2}-\frac{\sqrt{a}}{\sqrt{a}-2}+\frac{4\sqrt{a}-1}{a-4}\right):\frac{1}{a-4}=\left[\frac{a-2\sqrt{a}-(a+2\sqrt{a})}{(\sqrt{a}+2)(\sqrt{a}-2)}+\frac{4\sqrt{a}-1}{a-4}\right].(a-4)\)
\(=\left(\frac{-4\sqrt{a}}{a-4}+\frac{4\sqrt{a}-1}{a-4}\right).(a-4)=-4\sqrt{a}+4\sqrt{a}-1=-1\)
d)
\(\frac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{b-a}=\frac{(\sqrt{a}+\sqrt{b})^2-(\sqrt{a}-\sqrt{b})^2}{2(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}+\frac{2b}{a-b}=\frac{4\sqrt{ab}}{2(a-b)}+\frac{2b}{a-b}\)
\(=\frac{2\sqrt{ab}+2b}{a-b}=\frac{2\sqrt{b}(\sqrt{a}+\sqrt{b})}{(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
Các b ơi giúp m vs
Câu 1: A = \(\frac{1}{2\sqrt{x}}+\frac{1}{2-\sqrt{x}}-\frac{2\sqrt{x}}{4-x}\left(x\ne4,x\ge0\right)\)0 và B = \(\left(\sqrt{2}+\sqrt{3}\right)\sqrt{2}-\sqrt{6}+\frac{\sqrt{333}}{\sqrt{111}}\)
a. Rút gọn A và B
b. Tìm x để A = B
a=căn (x)
A=[(4-a^2)(2-a)+2a(4-a^2)-4a^2(2-a)]/[(4-a^2)(2-a)2a]
A=(8-10a^2+4a+3a^3)/a(16-4a^2-8a+2a^3)
A=(a-2)^2(3a+2)/a(a+2)(a-2)^2*2
A=(3a+2)/a(a+2)*2
B=2+căn(3)
A=B suy ra
(3a+2)/a(a+2)*2=2+căn 3
<=>bấm máy tính ra nghiệm a=0.1539181357
=>x=a^2 =0.02341454985
tl đúng
Cho \(D=\left(\frac{1}{\sqrt{a}-\sqrt{a-b}}+\frac{1}{\sqrt{a}+\sqrt{a+b}}\right):\left(1+\frac{\sqrt{a+b}}{\sqrt{a-b}}\right)\)
a. Đơn giản biểu thức D
b. Tìm b biết\(|D|=-D\)
c. Tính giá trị của D khi \(a=5+4\sqrt{2};b=2+6\sqrt{2}\)