cho x,y,z thuộc N
và x+y+z=6
tìm max C=xy+2yz+3zx
cho x+y+z=6 .tim MAX cua A= xy+2yz+3zx
cho x,y,z thỏa mãn x+y+z=6. tìm giá trị lớn nhất của A=xy+2yz+3zx
A = xy + 2yz + 3xz = xy + xz + 2yz + 2xz = x(y + z) + 2z(y + z)
Áp dụng BĐT: (a+b)^2/4 ≥ ab dấu = khi a = b
ta có:
(x + y + z)^2/4 ≥ x(y + z)
(x+ y +z)^2/4 ≥ z(y + z)
=> A ≤ 3(x + y + z)^2/4 = 3.36/4 = 27
=>Giá trị lớn nhất của = 27 sẽ xảy ra khi có các trường hợp:
{x = y + z
{z = y + z
Vậy y = 0 và x = z = 3
\(A=xy+2yz+3zx=x\left(6-x-z\right)+2\left(6-x-z\right)+3zx\)
\(=-x^2+6x-2z^2+12z=\left(-x^2+6x-9\right)+\left(-2z^2+12z-18\right)+27\)
\(=27-\left(x-3\right)^2-2\left(z-3\right)^2\le27\)
\(A=x\left(6-x-z\right)+2y\left(6-x-z\right)+3zx=-x^2+6x-2z^2+12z\)
\(=\left(-x^2+6x-9\right)+\left(-2z^2+12z-18\right)+27=27-\left(x-3\right)^2-2\left(z-3\right)^2\le27\)
PS: Cai trên ghi thiêu chữ y. Mà thôi coi cai này nè nha.
Cho các số thực x,y,z thỏa mãn: x+y+z=6.Tìm giá trị lớn nhất của A=xy+2yz+3zx
từ giả thiết ta có : z = 6 - x - y
Ta có : \(A=xy+z\left(2y+3x\right)=xy+\left(6-x-y\right)\left(2y+3x\right)\)
\(=-3x^2-2y^2-4xy+18x+12y\)
Do đó : \(3A=-9x^2-6y^2-12xy+54x+36y=-9x^2-6x\left(2y-9\right)-6y^2+36y\)
\(=-\left(3x+2y-9\right)^2-2y^2+81\le81\)
\(\Rightarrow A\le27\)
Vậy giá trị lớn nhất của A là 27 \(\Leftrightarrow\hept{\begin{cases}3x+2y-9=0\\y=0\end{cases}\Leftrightarrow x=3;y=0;z=3}\)
cho x+y+z=6
tim GTLN cua : xy+2yz+3zx
F = xy + 2yz + 3xz = xy + xz + 2yz + 2xz = x(y + z) + 2z(y + z)
áp dụng BĐT: (a+b)^2/4 ≥ ab dấu = khi a = b
ta có:
(x + y + z)^2/4 ≥ x(y + z)
(x+ y +z)^2/4 ≥ z(y + z)
=> F ≤ 3(x + y + z)^2/4 = 3.36/4 = 27
=> F max = 27 xảy ra khi:
{x = y + z
{z = y + z
<=> y = 0 và x = z = 3
Cho x ,y ,z thỏa mãn : x+ y+z =0 . Chứng minh rằng : xy+2yz+3zx ≤ 0
\(xy+2yz+3zx=xy+zx+2yz+2zx=x\left(y+z\right)+2z\left(y+x\right)=x.\left(-x\right)+2z.\left(-z\right)=-x^2-2z^2\le0\)-Dấu bằng xảy ra \(\Leftrightarrow x=y=z=0\)
cho x, y, z \(\in\)R thỏa mãn x+y+z=6. tìm GTLN của biểu thức A=xy+2yz+3zx
MÌNH CẦN GẤP Ạ!!!
biết các số nguyên dương x, y, z thỏa mãn hệ phương trình :x²+xy+(y²/3)=25, (y²/3)+z²=9, z²+xz+x²=16. tính A=xy+2yz+3zx
biết các số nguyên dương x, y, z thỏa mãn hệ phương trình :x²+xy+(y²/3)=25, (y²/3)+z²=9, z²+xz+x²=16. tính A=xy+2yz+3zx
de sai roi em oi
o phuong trinh 2 can them +yz nhe
Cho các số dương x, y, z thỏa mãn: \(\hept{\begin{cases}x^2+xy+\frac{y^2}{3}=25\\\frac{y^2}{3}+z^2=9\\z^2+xz+x^2=16\end{cases}}\).Tính giá trị biểu thức: \(N=xy+2yz+3zx\)