\(x.\frac{8-x}{x-1}\left(x-\frac{8-x}{x-1}\right)=15\)
\(\frac{2x+9}{\left(x+1\right)\left(x+8\right)}-\frac{2x+15}{\left(x+8\right)\left(x+7\right)}+\frac{2x+10}{\left(x+7\right)\left(x+3\right)}=\frac{4}{3}\)
(2x+9)/(x+1)(x+8)-(2x+15)/(x+8)(x+7)+(2x+10)/(x+7)(x+3)=4/3
(x+1+x+8)/(x+1)(x+8)-(x+8+x+7)/(x+8)(x+7)+(x+7+x+3)/(x+7)(x+3)=4/3
1/(x+8)+1/(x+1)-1/(x+7)-1/(x+8)+1/(x+7)+1/(x+3)=4/3
1/(x+1)+1/(x+3)=4/3
(x+3+x+1)/(x+3)(x+1)=4/3
(2x+4)/(x+3)(x+1)=4/3
=>(2x+4).3=(x+3)(x+1).4
6(x+2)=4(x+3)(x+1)
3(x+2)=2(x+3)(x+1)
3x+6=2(x^2+4x+3)
3x+6=2x^2+8x+6
2x^2+8x+6-3x-6=0
2x^2+5x=0
x(2x+5)=0
=> x=0 hoac 2x+5=0
=> x=0 hoac x=-5/2
tìm x,biết:
a)\(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
b)\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
c)\(\left(x+2\right)^2=\frac{38}{25}+\frac{9}{10}-\frac{11}{15}+\frac{13}{21}-\frac{15}{28}+\frac{17}{36}-...+\frac{197}{4851}-\frac{199}{4950}\)
giúp tớ với,huhu
Giải phương trình
a, \(x.\frac{\left(3-x\right)}{x+1}\left(x+\frac{3-x}{x+1}\right)=2\)
b, \(x.\frac{8-x}{x-1}\left(x+\frac{8-x}{x-1}\right)=15\)
\(\frac{x\left(3-x\right)}{x+1}\left(x+\frac{3-x}{x+1}\right)=2\)
\(\Leftrightarrow\frac{x\left(3-x\right)}{x+1}\left(\frac{x^2+x+3-x}{x+1}\right)=2\)
\(\Leftrightarrow\frac{x\left(3-x\right)}{x+1}.\frac{x^2+3}{x+1}=2\)
\(\Leftrightarrow\frac{x\left(3-x\right)}{x+1}.\frac{3x+3+x^2-3x}{x+1}=2\)
\(\Leftrightarrow\frac{x\left(3-x\right)}{x+1}\left(1+\frac{x^2-3x}{x+1}\right)=2\)
Đặt \(a=\frac{x\left(3-x\right)}{x+1}\)
\(\Leftrightarrow a\left(1+a=2\right)\)
\frac{x\left(3-x\right)}{x+1}\left(x+\frac{3-x}{x+1}\right)=2x+1x(3−x)(x+x+13−x)=2
\Leftrightarrow\frac{x\left(3-x\right)}{x+1}\left(\frac{x^2+x+3-x}{x+1}\right)=2⇔x+1x(3−x)(x+1x2+x+3−x)=2
\Leftrightarrow\frac{x\left(3-x\right)}{x+1}.\frac{x^2+3}{x+1}=2⇔x+1x(3−x).x+1x2+3=2
\Leftrightarrow\frac{x\left(3-x\right)}{x+1}.\frac{3x+3+x^2-3x}{x+1}=2⇔x+1x(3−x).x+13x+3+x2−3x=2
\Leftrightarrow\frac{x\left(3-x\right)}{x+1}\left(1+\frac{x^2-3x}{x+1}\right)=2⇔x+1x(3−x)(1+x+1x2−3x)=2
Đặt a=\frac{x\left(3-x\right)}{x+1}a=x+1x(3−x)
\Leftrightarrow a\left(1+a=2\right)⇔a(1+a=2)
-4x(x-5)-2x(8-2x)=-3
\(\frac{x-1}{-15}=\frac{-60}{x-1}\)
\(\left(\frac{1}{4}x-1\right)+\left(\frac{5}{6}x-2\right)-\left(\frac{3}{8}x+1\right)=4,5\)
a/ -4x(x - 5) - 2x(8 - 2x) = -3
=> -4x2 + 20x - 16x + 4x2 = -3
=> 4x = -3
=> x = -3/4
b/ \(\frac{x-1}{-15}=-\frac{60}{x-1}\Rightarrow\left(x-1\right)^2=\left(-60\right)\left(-15\right)\)
\(\Rightarrow\left(x-1\right)^2=900\Rightarrow\orbr{\begin{cases}x-1=30\\x-1=-30\end{cases}\Rightarrow\orbr{\begin{cases}x=31\\x=-29\end{cases}}}\)
Vậy x = -29 , x = 31
\(\frac{5}{12}x\left(8+x\right)-\frac{1}{5}x\left(\frac{15}{4}+x\right)=15\)
Giải phương trình
a) \(x.\frac{3-x}{x+1}\left(x+\frac{3-x}{x+1}\right)=2\)
b) \(x.\frac{8-x}{x-1}\left(x-\frac{8-x}{x-1}\right)=15\)
a) ĐK: \(x\ne-1\)
\(x.\frac{3-x}{x+1}\left(x+\frac{3-x}{x+1}\right)=2\)
\(\Leftrightarrow\frac{x^2\left(3-x\right)}{x+1}+\frac{x\left(3-x\right)^2}{\left(x+1\right)^2}-2=0\)
\(\Leftrightarrow\frac{\left(3x^2-x^3\right)\left(x+1\right)+x\left(9-6x+x^2\right)-2\left(x^2+2x+1\right)}{\left(x+1\right)^2}=0\)
\(\Leftrightarrow\left(3x^2-x^3\right)\left(x+1\right)+x\left(9-6x+x^2\right)-2\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow-x^4+3x^3-5x^2+5x-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(-x^3+2x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(-x^2+x-1\right)=0\)
Do \(-x^2+x-1\ne0\forall x\) nên \(x-1=0\Leftrightarrow x=1\)
b) Tương tự.
Giải Phương Trình:
\(x\left(\frac{8-x}{x-1}\right)\left(\frac{x^2-8}{x-1}\right)=15\)
Điều kiện \(x\ne1.\)
Đặt \(y=\frac{x-8}{x-1}\to xy\left(x+y\right)=-15,y\left(x-1\right)=x-8\to xy\left(x+y\right)=-15,xy=x+y-8.\)
Đặt \(a=xy,b=x+y\to ab=-15,a=b-8\to b^2-8b=-15\to b-4=\pm1\to b=5,3.\)
Với \(b=5\to a=-3\to xy=-3,x+y=5\to x,y\) là nghiệm phương trình \(t^2-5t-3=0\), hay \(t=\frac{5\pm\sqrt{37}}{2}\), suy ra \(x=\frac{5\pm\sqrt{37}}{2}\)
Với \(b=3\to a=-5\to xy=-5,x+y=3\to x,y\) là nghiệm của \(t^2-3t-5=0\to t=\frac{3\pm\sqrt{29}}{2}\) suy ra \(x=\frac{3\pm\sqrt{29}}{2}.\)
Vậy phương trình có bốn nghiệm \(x=\frac{5\pm\sqrt{37}}{2}\) và \(x=\frac{3\pm\sqrt{29}}{2}.\)
\(\left(\frac{1}{16}\right)^x=\left(\frac{1}{8}\right)^6\)
\(\left(\frac{1}{16}\right)^x=\left(\frac{1}{8}\right)^{36}\)
\(\left(\frac{1}{32}\right)^x=\left(\frac{1}{8}\right)^{15}\)
\(\left(\frac{1}{9}\right)^x=\left(\frac{1}{27}\right)^6\)
thank you
tìm các giá trị x thỏa mãn \(x\frac{8-x}{x-1}\left(x-\frac{8-x}{x-1}\right)=15\)
Bạn vào đây xem thử: