Chứng minh rằng:
Nếu a/b < c/d (b,d thuộc N*) thì a/b < a+b/ b+d < c/d
Chứng minh rằng:
Với a, b, c, d, e, thuộc N* và a/b < c/d thì a/b < (c+e)/ (d+e).
Chứng minh rằng:Nếu \(\frac{a}{b}=\frac{b}{d}\) thì \(\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\)
Đặt \(\frac{a}{b}=\frac{b}{d}=k\)
\(\Rightarrow k^2=\frac{a^2}{b^2}=\frac{b^2}{d^2}\)
Áp dụng TCDTSBN ta có:
\(k^2=\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{b^2+d^2}\) (1)
Lại có: \(k^2=k.k=\frac{a}{b}\cdot\frac{b}{d}=\frac{a}{d}\) (2)
Từ (1) và (2) suy ra \(\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\) (đpcm)
Cảm ơn bạn bạn giải bài tiếp theo ik bài mà mk nvuwaf đăng í tìm 3 số ....
cảm ơn nhìu
Cho x,y,b,d thuộc N* .Chứng minh rằng a/b<c/d thì a/b<x.a+y.c/x.b+y.d<c/d
Cho a,b,c,d thuộc Z, a>b>c>d và a,b,c,d khác 0. Chứng minh nếu a/b=c/d thì a+d>b+c
Chứng minh rằng:Nếu \(\dfrac{a}{b}=\dfrac{c}{d}\)thì\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
Có : \(\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}\)
Áp dụng tính chất dãy tỉ số ...... :
\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}\)
\(\Leftrightarrow\dfrac{a^2}{c^2}=\dfrac{a^2+b^2}{c^2+d^2}\)
\(\Leftrightarrow\dfrac{a}{c}.\dfrac{b}{d}=\dfrac{a^2+b^2}{c^2+d^2}\)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow\left(\dfrac{a}{c}^2\right)=\left(\dfrac{b}{d}\right)^2=\dfrac{ab}{cd}\)
\(\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{ab}{cd}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{ab}{cd}=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}\)
\(\Rightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\left(đpcm\right)\)
Cho 4 số nguyên a, b, c, d (b, d < 0) và (a, b) = (c, d) = 1
a) Chứng minh nếu a/b + c/d thuộc Z thì b=d
b) Tìm các số dương a, b, c thỏa 1/a + 1/b + 1/c thuộc Z
cho a,b,c,d thuộc N . a>b>c>d . chứng minh rằng p= (a-b) (a-c)(a-d)(b-c)(b-d) (c-d) chia hết cho 12
Câu hỏi của Hiền Hòa - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo bài làm ở link này nhé! :)
Cho a,b,c,d thuộc Z; b,d >0. Chứng minh rằng:
a) Nếu a/b > c/d thì ad>bc
b) Nếu ad>bc thì a/b>c/d
a)Do b,d>0
\(\frac{a}{b}>\frac{c}{d}\Rightarrow\frac{a.d}{b.d}>\frac{c.b}{b.d}\Rightarrow a.d>b.c\)
b)Do b,d>0
=>\(ad>bc\Leftrightarrow\frac{ad}{bd}>\frac{bc}{bd}\Rightarrow\frac{a}{b}>\frac{c}{d}\)
Chứng minh rằng:nếu \(\frac{x+2}{x-2}=\frac{y+3}{y-3}\)thì\(\frac{x}{2}=\frac{y}{3}\)
Cho a, b, c, d là các số hữu tỉ dương và \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh rằng: (a+2c).(b+d)=(a+c).(b+2d)
Câu 2:
Ta có \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}=\frac{a+c}{b+d}.\)
\(\Rightarrow\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\left(đpcm\right).\)
Chúc bạn học tốt!