Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trung Dũng
Xem chi tiết
Hoàng Thị Thu Thảo
Xem chi tiết
ST
16 tháng 7 2017 lúc 10:17

Đặt \(\frac{a}{b}=\frac{b}{d}=k\)

\(\Rightarrow k^2=\frac{a^2}{b^2}=\frac{b^2}{d^2}\)

Áp dụng TCDTSBN ta có:

\(k^2=\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{b^2+d^2}\) (1)

Lại có: \(k^2=k.k=\frac{a}{b}\cdot\frac{b}{d}=\frac{a}{d}\) (2)

Từ (1) và (2) suy ra \(\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\) (đpcm)

Hoàng Thị Thu Thảo
16 tháng 7 2017 lúc 10:20

Cảm ơn bạn bạn giải bài tiếp theo ik bài mà mk nvuwaf đăng í tìm 3 số ....

cảm ơn nhìu

mai ha phu loc
6 tháng 8 2019 lúc 16:55

hay, hay đêý

trần đức nam
Xem chi tiết
Lê Diệu Chinh
Xem chi tiết
Phạm Hồng Anh
15 tháng 8 2018 lúc 9:05

bạn ơi bạn làm dc chưa

Trịnh Thị Thảo Nhi
Xem chi tiết
Kirigawa Kazuto
5 tháng 8 2017 lúc 10:03

Có : \(\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}\)

Áp dụng tính chất dãy tỉ số ...... :

\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}\)

\(\Leftrightarrow\dfrac{a^2}{c^2}=\dfrac{a^2+b^2}{c^2+d^2}\)

\(\Leftrightarrow\dfrac{a}{c}.\dfrac{b}{d}=\dfrac{a^2+b^2}{c^2+d^2}\)

Phương Trâm
5 tháng 8 2017 lúc 10:05

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\left(\dfrac{a}{c}^2\right)=\left(\dfrac{b}{d}\right)^2=\dfrac{ab}{cd}\)

\(\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{ab}{cd}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{ab}{cd}=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}\)

\(\Rightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\left(đpcm\right)\)

Long123
Xem chi tiết
Lê Phương Linh
Xem chi tiết
Nguyễn Linh Chi
29 tháng 11 2018 lúc 17:44

Câu hỏi của Hiền Hòa - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo bài làm ở link này nhé! :)

nguyễn thị cẩm vân
30 tháng 11 2018 lúc 19:43

em cam on co

BaKa ĐấY SaO KhônG
Xem chi tiết
Ác Mộng
1 tháng 7 2015 lúc 21:07

a)Do b,d>0

\(\frac{a}{b}>\frac{c}{d}\Rightarrow\frac{a.d}{b.d}>\frac{c.b}{b.d}\Rightarrow a.d>b.c\)

b)Do b,d>0

=>\(ad>bc\Leftrightarrow\frac{ad}{bd}>\frac{bc}{bd}\Rightarrow\frac{a}{b}>\frac{c}{d}\)

Cơ Liên Mỹ
Xem chi tiết
Vũ Minh Tuấn
18 tháng 9 2019 lúc 20:39

Câu 2:

Ta có \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}=\frac{a+c}{b+d}.\)

\(\Rightarrow\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\left(đpcm\right).\)

Chúc bạn học tốt!