Cho đoạn thẳng BC cố định, A là điểm di động sao cho tam giác ABC nhọn. AA' là đường cao và H là trực tâm của tam giác ABC. Xác định vị trí diểm A để AA'.HA' đạt giá trị lớn nhất.
Cho đoạn thẳng BC cố định, A là điểm di động sao cho tam giác ABC nhọn. AA' là đường cao và H là trực tâm của tam giác ABC. Xác định vị trí diểm A để AA'.HA' đạt giá trị lớn nhất.
Cho đường tròn (0) có dây BC không là đường kính .Lấy điểm A bất kì trên cung lớn BC sao cho tam giác ABC có 3 góc nhọn .Gọi H là trực tâm của tam giác ABC. Xác định vị trí của A sao cho tổng
HA+HB+HC đạt giá trị lớn nhất
Vẽ các đường kính AM, BN, CP của (O). Dễ cm được BMCH, CNAH,APBH là các hình bình hành => AH = CN; BH = CM; CH = BM
=> AH + BH + CH = CN + CM + BM
Vì BC cố định nên CN không đổi => (AH + BH + CH) max khi (CM + BM) max. Ta sẽ cm rằng điều đó xảy ra khi M trùng điểm chính giữa cung nhỏ BC.
Thật vậy gọi Q là điểm chính giữa cung nhỏ BC. Kéo dài BQ đoạn QD = BQ = CQ, kéo dài BM đoạn ME = MC => BD = BQ + CQ = 2BQ và BE = BM + CM
Vì tg CQD cân tại Q => ^BDC = ^QCD = ^BQC/2
Tương tự tg CME cân tại M => ^BEC = ^MCE = ^BMC/2
Mà ^BMC = ^BQC => ^BEC = ^BDC => B,C,D,E cùng thuộc đường tròn đường kính BD => BE =< BD <=> BM + CM =< 2BQ => (BM + CM)
Max = 2BQ xảy ra khi E trùng D hay khi M trùng Q khi đó A là điểm chính giữa cung lớn BC
cho đường tròn (O;R) và cung BC cố định(BC không đi qua O).A là một điểm di động trên cung lớn BC sao cho tam giác ABC nhọn các đường cao AD BE CF đồng quy tại H. CÁC đường thẳng BE;CF đường tròn tâm O tại điểm thứ 2 là Q và P .Xác định vị trí của A trên cung BC để chu vi tam giác DEF có giá trị lớn nhất
cho tam giác ABC nhọn, các đường cao AA', BB', CC', H là trực tâm
a) tính \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\)
b) Gọi AI là phân giác của tam giác ABC;IM,IN thứ tự là phân giác của góc AIC và góc AIB.CMR: AN*BI*IC=BN*IC*AM
C)CMR đường thẳng DF luôn di qua 1 điểm cố định khi điểm M di động trên đoạn thẳng Ab
Ban vao trang nay:Đề thi HSG Toán 8 cấp huyện năm 2016-2017 Phòng GD&ĐT Củ Chi
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O, BC khác đường kính nằm cố định trên đường tròn, A thay đổi trên cung lớn BC. Tìm ra vị trí của điểm A sao cho:
a, Diện tích tam giác ABC đạt giá trị lớn nhất
b, Chu vi tam giác ABC đạt giá trị lớn nhất
a: Kẻ BD vuông góc AC,CE vuông góc AB
góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
=>góc AED=góc ACB
=>ΔAED đồng dạng vơi ΔACB
Tâm M của đường tròn ngoại tiếp tứ giác BDCE là trung điểm của BC
Gọi H là giao của BD và CE
=>AH vuông góc BC tại N
Gọi giao của OM với (O) là A'
ΔOBC cân tại O
=>OM vuông góc BC
AN<=A'M ko đổi
=>\(S_{ABC}=\dfrac{1}{2}\cdot AN\cdot BC< =\dfrac{1}{2}\cdot A'M\cdot BC_{kođổi}\)
Dấu = xảy ra khi A trùng A'
=>A là điểm chính giữa của cung BC
Cho tam giác ABC nhọn, các đường cao AA',BB',CC' , H la trực tâm.
a) Tính tổng \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\)
b) Gọi AI là phân giác của tam giác ABC; IM,IN thứ tự là phân giác của góc AIC và góc AIB . CMR: AN.BI.CM=BN.IC.AM
c) CMR: đường thẳng DF luôn đi qua 1 điểm cố định khi điểm M di động trên đoạn thẳng AB
Ban vao trang Đề thi HSG Toán 8 cấp huyện năm 2016-2017 Phòng GD&ĐT Củ Chi
Cho (O), bán kinh R và một dây cung BC cố định, A là một điểm di động trên cung lớn BC sao cho tam giác ABC nhọn. Các đường cao AC, BE, CF của tam giác ABC đồng quy tại H. Các đường thẳng BE và CF cắt đường tròn tâm O tại điểm thứ 2 lần lượt là Q và P
1, Chứng minh B, F, E, C cùng thuộc một đường tròn
2, Chứng minh các đường thẳng PQ, EF song song với nhau
3, Gọi I là trung điểm của BC. Chứng minh góc FDE = 2 lần góc ABE và góc FDE bằng góc FIE
4, Xác định vị trí của điểm A trên cung lớn BC để chu vi tam giác DEF có giá trị lớn nhất
a/
Ta thấy F và E đều nhìn BC dưới cùng 1 góc 90 độ nên E,F nằm trên đường tròn đường kính BC ta gọi là đường tròn (O')
=> B,F,E,C cùng nawmg trên một đường tròn
b/
Xét đường tròn (O) ta có
sđ \(\widehat{BQP}=\) sđ \(\widehat{BCP}=\frac{1}{2}\) sđ cung BP (góc nội tiếp đường tròn) (1)
Xét đường tròn (O') ta có
sđ \(\widehat{BEF}=\) sđ \(\widehat{BCP}=\frac{1}{2}\) sđ cung BF (góc nội tiếp đường tròn) (2)
Từ (1) và (2) \(\Rightarrow\widehat{BQP}=\widehat{BEF}\) => PQ//EF (Hai đường thẳng bị cắt bởi đường thẳng thứ 3 có hai góc ở vị trí đồng vị thì chúng // với nhau
c/ ta thấy F và D cùng nhìn BH dưới cùng 1 góc 90 độ nên BDHF là tứ giác nội tiếp
sđ \(\widehat{ABE}=\)sđ \(\widehat{FDA}=\frac{1}{2}\) sđ cung FH (1)
Ta thấy D và E cùng nhìn AB đướ cùng 1 góc 90 độ nên ABDE là tứ giác nội tiếp
sđ \(\widehat{ABE}=\)sđ \(\widehat{ADE}=\frac{1}{2}\) sđ cung AE (2)
Mà \(\widehat{FDA}+\widehat{ADE}=\widehat{FDE}\) (3)
Từ (1) (2) và (3) \(\Rightarrow\widehat{FDE}=2.\widehat{ABE}\left(dpcm\right)\)
Cho đoạn thẳng BC cố định. A là điểm di động sao cho tam giác ABC nhọn. Kẻ AM là đường cao và H là trực tâm của tam giác ABC. Xác định vị trí của điểm A để AM.MH đạt giá trị lớn nhất.
Tam giác ABC có 3 góc nhọn nội tiếp (O;R), các đường cao AD; BE; CF cắt nhau tại H. Kẻ đường kính AA', I là trung điểm của BC.
1, Cm BCEF nội tiếp.
2, H, I, A' thẳng hàng.
3, DH* DA= DB* DC.
4, Cho BC cố định, A chuyển động trên cung BC lớn sao cho tam giác ABC nhọn. Tìm vị trí của A để diện tích tam giác eah max