Cho pt \(x^2-2mx+m^2-2m=0\) . Tìm m để pt có 2 nghiệm thỏa mãn \(\sqrt{x_1}+\sqrt{x_2}=3\)
Giúp mình với
Cho pt x^2-(2m+3)x+4m+2=0
a)chứng minh pt trên có nghiệm với mọi m
b)tìm GTLN của A=x1x2-x1^2-x2^2
c)tìm m để pt có nghiệm thỏa mãn 2x1-3x2=5
Cho PT:
\(\left(m-4\right)x^2-2mx+m-2=0\)
a) Tìm m để PT có nghiệm \(x=\sqrt{2}\)
b) Tìm m để PT có nghiệm kép. Tìm nghiệm kép đó
c) Tìm m để PT có 2 nghiệm phân biệt
a, Pt có nghiệm \(x=\sqrt{2}\) tức là
\(2\left(m-4\right)-2m\sqrt{2}+m-2=0\)
\(\Leftrightarrow2m-8-2m\sqrt{2}+m-2=0\)
\(\Leftrightarrow m\left(3-2\sqrt{2}\right)=10\)
\(\Leftrightarrow m=\frac{10}{3-2\sqrt{2}}\)
b, *Với m = 4 thì pt trở thành
\(\left(4-4\right)x^2-2.4.x+4-2=0\)
\(\Leftrightarrow-8x+2=0\)
\(\Leftrightarrow x=\frac{1}{4}\)
Pt này ko có nghiệm kép
*Với \(m\ne4\)thì pt đã cho là pt bậc 2
Có \(\Delta'=m^2-\left(m-4\right)\left(m-2\right)=m^2-m^2-6m+8=-6m+8\)
Pt có nghiệm kép \(\Leftrightarrow\Delta'=0\)
\(\Leftrightarrow m=\frac{4}{3}\)
Với \(m=\frac{4}{3}\) thì \(\Delta'=0\)
Pt có nghiệm kép \(x=\frac{-b'}{a}=\frac{m}{m-4}=\frac{\frac{4}{3}}{\frac{4}{3}-4}=-\frac{1}{2}\)
c, Pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\)
\(\Leftrightarrow-6m+8>0\)
\(\Leftrightarrow m< \frac{4}{3}\)
Tìm m để phương trình \(x^2-x+m^2-6=0\) có hai nghiệm \(x_1,x_2\) thỏa mãn \(2018x_1+2019x_2=2020\) Tích các giá trị của m tìm được là
Cho pt x2-5x + m=0 (m là tham sô). tìm m để pt có 2 nghiệm x1, x2 thỏa mãn |x1-x2| =3
\(\Delta=25-4m\)pt có 2 nghiệm <=> \(\Delta\ge0\Leftrightarrow25-4m\ge0\Leftrightarrow m\le\frac{25}{4}\)
áp dụng hệ thức vi ét ta có: \(x1+x2=5\) (1) ; \(x1.x2=m\)(2)
|x1-x2|=3
th1: x1-x2=3 <=> x1=3+x2 =>thế vào (1): x2+3+x2=5 <=> 2x2=2 <=> x2=1 =>x1=1+3=4 => x1.x2=m=1.4 => m=4(t/m đk)
th2: x1-x2=-3 <=> x1=-3+x2 => x2-3+x2=5 <=> x2=4 => x1=1 => m=1.4=4 (t/m đk)
=> pt có 2 nghiệm... <=> m=4
Cho pt \(x^2-2x+m=0\) . Tìm m để pt có 2 nghiệm x1, x2 thỏa mãn \(\frac{m^3-m^2+4m}{x_1^2+2x_2+m^2}+m^2+1\) đạt giá trị nhỏ nhất
Ta có \(\Delta'=1-m\ge0\)=>\(m\le1\)
Theo viet ta có
\(x_1+x_2=2\)
Vì x1 là nghiệm của phương trình
=> \(x_1^2=2x_1-m\)
Khi đó
\(P=\frac{m^3-m^2+4m}{2\left(x_1+x_2\right)+m^2-m}+m^2+1\)
\(=\frac{m\left(m^2-m+4\right)}{m^2-m+4}+m^2+1=m^2+m+1=\left(m+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(MinP=\frac{3}{4}\)khi \(m=-\frac{1}{2}\)(thỏa mãn \(x\le1\))
Cho phương trình: \(x^2-4x+m=0\)(*)
a. giai pt với m = -60
b. tìm m để pt (*) có 2 nghiệm \(x_1,x_2\) ( \(x_{1<}x_2\)) thỏa mãn \(x^2_2-x^2_1=0\)
a, với m = - 60 ta có:
x^2 - 4x - 60 = 0
=> x^2 + 6x - 10 x - 60 = 0
=> x(x + 6) - 10 ( x+6) = 0
=> ( x -10)( x + 6) = 0
=> x = 10 hoặc x = -6
PT thì phải là $(m+1)x^2-2mx+2m=0$ nhé bạn chứ không có =0 thì không phải pt.
Lời giải:
TH1: $m=-1$ thì PT có nghiệm duy nhất $x=1$ $(*)$
----------------------------------------
TH2: $m\neq -1$ thì PT là PT bậc 2 ẩn $x$
$\Delta'=-m(m+2)$
PT có nghiệm khi $\Delta'=-m(m+2)\geq 0\Leftrightarrow -2\leq m\leq 0$
PT vô nghiệm khi $\Delta'=-m(m+2)<0\Leftrightarrow m< -2$ hoặc $m>0$
PT có 2 nghiệm pb khi $\Delta=-m(m+2)>0\Leftrightarrow -2< m< 0$
Như vậy, kết hợp 2 TH ta có:
PT ban đầu có nghiệm khi $-2\leq m\leq 0$
PT ban đầu vô nghiệm khi $m<-2$ hoặc $m>0$
PT ban đầu có 2 nghiệm phân biệt khi $-2< m< 0$ và $m\neq -1$
Cho PT mx2 - 2( m + 1 )x + ( m - 4 ) = 0. Tìm m để PT có 2 nghiệm x1, x2 thỏa mãn điều kiện x1 + 4x2 = 3
cho pt có ẩn số x: x2-2(m-1)x-3-m=0
tìm m sao cho nghiệm số của 2 pt thoả mãn điều kiện: \(x_1^2+x_2^2\ge10\)
Tuấn làm ra lun cho mk xem đi, mk làm rồi nhưng ko biết có đúng ko?
ta có a và c trái dấu nên pt luôn có 2 nghiệm phân biệt
s=-b/a=2m-1
p=3-m
x1^2+x2^2=(x1+x2)^2-2*(3-m)
<=>x1^2+x2^2=4m^2-4m+1-6+2m>=10
=>giả máy tính casio ta tìm được:m<=(1-can65)/4vàm>=(1+an65)/4
theo mình là vậy