Cho xy - yz - zx = 0 và xyz khác 0. Tính giá trị biểu thức B = yz/x^2 - zx/y^2 - xy/z^2 .
Cho x^2 +y^2 +z^2 =10. Tính giá trị của biểu thức :
P= ( xy+yz+ zx ) ^2 + (x^2 - yz ) ^2 + ( y^2 -xz ) + ( z^2 -xy ) ^2
Cho các số x,y,z thỏa mãn : x^2+y^2+z^2=xy+yz+zx và x^2018 +y^2018+z^2018=3. Tính giá trị của biểu thức P=x^28+y^57+z^2017
Cho xyz = 1. Tính giá trị biểu thức A = x/(xy+x+1)+y/(yz+y+1)+z/(xz+z+1)
nhầm xíu nhá mk lm lại :
\(A=\frac{xz}{z\left(xy+x+1\right)}+\frac{xyz}{xz\left(yz+y+1\right)}+\frac{z}{xz+z+1}\)\(=\frac{xz}{xyz+xz+z}+\frac{1}{xyz^2+xyz+xz}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)
\(=\frac{xz+z+1}{xz+z+1}=1\)
\(A=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}=\frac{xz}{z\left(xy+x+1\right)}+\frac{xyz}{xz\left(yz+y+1\right)}+\frac{z}{xz+z+1}\)
\(=\frac{xy}{xyz+xz+z}+\frac{1}{xyz^2+xyz+xz}+\frac{z}{xz+z+1}=\frac{xy}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)
\(=\frac{xy+1+z}{xz+z+1}=1\)
vậy A=1
\(\text{Ta có :}\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)
\(=\frac{x}{xy+x+1}+\frac{xy}{xyz+xy+x}+\frac{xyz}{x^2yz+xyz+xy}\)
\(=\frac{x}{xy+x+1}+\frac{xy}{xy+x+1}+\frac{1}{xy+x+1}\left(\text{Vì }xyz=1\right)\)
\(=\frac{x+xy+1}{xy+x+1}\)
\(=1\)
cho x,yz khác 0 thỏa mãn \(\frac{xy}{x+y}\)=\(\frac{yz}{y+z}\)=\(\frac{zx}{z+x}\)
Tính giá trị của P=\(\frac{20xy+4yz+2013zx}{x^2+y^2+z^2}\)
GIÚP EM NHA CÁC ANH CHỊ
Từ \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\Rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{x+z}{xz}\)
\(\Rightarrow\frac{x}{xy}+\frac{y}{xy}=\frac{y}{yz}+\frac{z}{yz}=\frac{x}{xz}+\frac{z}{xz}\)
\(\Rightarrow\frac{1}{y}+\frac{1}{x}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\)
\(\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\).Khi đó
\(P=\frac{20xy+4yz+2013xz}{x^2+y^2+z^2}=\frac{20x^2+4x^2+2013x^2}{x^2+x^2+x^2}=\frac{2037x^2}{3x^2}=679\)
cho x,y>0 thỏa mãn \(^{x^2+y^2-xy=8}\)
tìm GTNN và GTNN của biểu thức M=\(^{x^2+y^2}\)
Cho \(xyz=1\) . Giá trị của biểu thức \(Q=\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}\) bằng ?
Cho \(xyz=1\) . Giá trị của biểu thức \(Q=\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}\) bằng ?
Nếu x+y+z=0 và xyz khác 0. Tính GTBT : A=x^2/yz+y^2/zx+z^2/yx
các bn giúp mk nha.
cho x,y,x là các số thỏa mãn xyz=1 tính giá trị biểu thức \(M=\frac{1}{xy+x+1}+\frac{y}{yz+y+1}\frac{1}{xyz+yz+y}\)
Cho tỉ lệ thức: x +2 phần y +3= 2 phần 3 (y khác 0) Tính giá trị biểu thức: A= x² +y² phần xy