Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Miko
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 4 2021 lúc 16:41

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+y^2=xy+3y-1\\\left(x+y\right)\left(x^2+1\right)=x^2+y+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y^2+\left(x-3\right)y+x^2+1=0\\x^3+x+x^2y-x^2-1=0\end{matrix}\right.\)

Trừ vế cho vế:

\(\Rightarrow y^2-\left(x^2-x+3\right)y-x^3+2x^2-x+2=0\)

\(\Delta=\left(x^2-x+3\right)^2-4\left(-x^3+2x^2-x+2\right)=\left(x^2+x-1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{x^2-x+3+x^2+x-1}{2}=x^2+1\\y=\dfrac{x^2-x+3-x^2-x+1}{2}=-x+2\end{matrix}\right.\)

Thế vào pt dưới:

\(\left[{}\begin{matrix}x+x^2+1=2\\x-x+2=\dfrac{x^2+1-x+2}{x^2+1}\end{matrix}\right.\)

\(\Leftrightarrow...\)

fan FA
Xem chi tiết
Trần Phúc Khang
12 tháng 5 2019 lúc 14:29

Ta có \(\left(x+2\right)\left(y+3\right)+\left(x+4\right)\left(y+1\right)=2xy+4x+6y+10=30\)

Đặt \(x+2=a,y+1=b\)

Ta có hệ mới

\(\hept{\begin{cases}\frac{1}{a\left(a+2\right)}+\frac{1}{b\left(b+2\right)}=\frac{2}{15}\left(1\right)\\a\left(b+2\right)+b\left(a+2\right)=30\left(2\right)\end{cases}}\)

Lấy (1).(2)

=>\(\frac{a}{b}+\frac{b}{a}+\frac{a+2}{b+2}+\frac{b+2}{a+2}=4\)

Nếu a,b khác dấu 

=> \(VT\le-4\)(loại)

Nếu a,b cùng dấu 

=> \(VT\ge4\)

Dấu bằng xảy ra khi a=b=3 hoặc a=b=-5

=> x=1,y=2 hoặc x=-7,y=-6 (thỏa mãn điều kiện xác định)

Vậy x=1,y=2 hoặc x=-7,y=-6

Nguyễn Trung Thành
19 tháng 5 2019 lúc 9:29

bn nào giải thick cho mk đoạn cùng dấu và trái dấu với 

tại sao cùng dấu lại >=4

trái dấu lại<=4

và làm thế nào để tính a,b

Nguyễn Phương Thảo
Xem chi tiết
Tran Le Khanh Linh
6 tháng 7 2020 lúc 20:20

\(\hept{\begin{cases}\left(x+y\right)^2=xy+3y-1\\x+y=\frac{x^2+y+1}{1+x^2}\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+y^2+xy-3y+1=0\\x+y=\frac{y}{1+x^2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y\left(x+y-1\right)=-\left(x^2+1\right)\\x+y-1=\frac{y}{1+x^2}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{y}{1+y}\left(x+y-3\right)=-1\\x+y-3=\frac{y}{1+x^2}-2\end{cases}}}\)

Đặt \(\frac{y}{x^2+1}=1;x+y-3=b\)

hệ phương trình trở thành \(\hept{\begin{cases}ab=-1\\a-b=2\end{cases}\Leftrightarrow\hept{\begin{cases}b\left(b+2\right)=-1\\a-b=2\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(b+1\right)^2=0\\a=2+b\end{cases}\Leftrightarrow}\hept{\begin{cases}b=-1\\a=1\end{cases}}}\)

đến đây thay vào tìm x,y

Khách vãng lai đã xóa
Phùng Gia Bảo
Xem chi tiết
Thanh Tùng DZ
29 tháng 12 2019 lúc 20:37

\(\hept{\begin{cases}x^2+y+x^3y+xy^2+xy=\frac{-5}{4}\\x^4+y^2+xy\left(1+2x\right)=\frac{-5}{4}\end{cases}}\)

Khách vãng lai đã xóa
Thanh Tùng DZ
29 tháng 12 2019 lúc 20:49

\(\Leftrightarrow\hept{\begin{cases}x^2+y+x^3y+xy^2+xy=\frac{-5}{4}\\x^4+2x^2y+y^2+xy=\frac{-5}{4}\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+y+xy\left(x^2+y\right)+xy=\frac{-5}{4}\left(1\right)\\\left(x^2+y\right)^2+xy=\frac{-5}{4}\left(2\right)\end{cases}}}\)

Đặt x2 + y = a ; xy = b

Khi đó hệ phương trình trở thành : \(\hept{\begin{cases}a+ab+b=\frac{-5}{4}\\a^2+b=\frac{-5}{4}\end{cases}}\)\(\Leftrightarrow a+ab-a^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=0\\b-a+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2+y=0\\xy-\left(x^2+y\right)+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=-x^2\\x^2+y=xy+1\end{cases}}}\)

với y = -x2 thay vào ( 2 ), ta có : x . ( -x2 ) = \(\frac{-5}{4}\)\(\Rightarrow x=\sqrt[3]{\frac{5}{4}}\Rightarrow y=-\sqrt[3]{\frac{25}{16}}\)

với x2 + y = xy + 1 \(\Leftrightarrow\left(x^2-1\right)-\left(xy-y\right)=0\Leftrightarrow\left(x-1\right)\left(x+1-y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=y-1\end{cases}}\)từ đó suy ra \(y=\frac{-3}{2}\)

Vậy ....

Khách vãng lai đã xóa
Tran Huong
Xem chi tiết
Diệu Ngọc
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2020 lúc 20:09

Cộng vế với vế:

\(x^2+2xy+y^2+x+y=12\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+y\right)-12=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=-4\\x+y=3\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=-4\\xy=5-\left(x+y\right)=9\end{matrix}\right.\)

Theo Viet đảo, x và y là nghiệm: \(t^2-4t+9=0\) (vô nghiệm)

TH2: \(\left\{{}\begin{matrix}x+y=3\\xy=5-\left(x+y\right)=2\end{matrix}\right.\)

Theo Viet đảo, x và y là nghiệm:

\(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)

hoàng văn thuận
Xem chi tiết
Phan Ngô Ngọc Bích
Xem chi tiết
Lê Trường Lân
Xem chi tiết