Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hieu
Xem chi tiết
Tiên Tiên
Xem chi tiết
Lê Anh Quân
Xem chi tiết
Chu Thị Dương
Xem chi tiết
Chu Thị Dương
15 tháng 5 2023 lúc 0:10

cho pt: x2 + 4(m - 1)x-12=0 (1)

tìm m để pt (1) có 2no phân biệt x1,x2 thỏa mãn: |x1 - 2| . √4-mx2 = 4

Nguyễn Lê Phước Thịnh
15 tháng 5 2023 lúc 7:23

loading...  

Tống Thị Hồng Nhung
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 8 2023 lúc 22:14

a: Để phương trình có hai nghiệm trái dấu thì

m^2+2m+3<0

=>m^2+2m+1+2<0

=>(m+1)^2+2<0(vô lý)

b:

Δ=(2m+3)^2-4(m^2+2m+3)

=4m^2+12m+9-4m^2-8m-12

=4m-3

Để phương trình có hai nghiệm phân biệt thì 4m-3>0

=>m>3/4

4x1x2=(x1+x2)^2-2(x1+x2)+5

=>4*(m^2+2m+3)=(2m+3)^2-2(2m+3)+5

=>4m^2+8m+12=4m^2+12m+9-4m-6+5

=>8m+12=8m-1

=>12=-1(vô lý)

Văn Như Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 4 2021 lúc 21:56

1) Thay m=1 vào phương trình, ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

Vậy: Khi m=1 thì phương trình có nghiệm duy nhất là x=1

𝓓𝓾𝔂 𝓐𝓷𝓱
5 tháng 4 2021 lúc 21:58

1) Bạn tự làm

2) Ta có: \(\Delta'=\left(m-1\right)^2\ge0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\) 

a) Ta có: \(x_1+x_2=-1\) \(\Rightarrow2m=-1\) \(\Leftrightarrow m=-\dfrac{1}{2}\)

   Vậy ...

b) Ta có: \(x_1^2+x_2^2=13\) \(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)

            \(\Rightarrow4m^2-4m-11=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{13}}{2}\)

  Vậy ... 

Nguyễn Lê Phước Thịnh
5 tháng 4 2021 lúc 22:00

2) Ta có: \(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot\left(2m-1\right)=4m^2-8m+4=\left(2m-2\right)^2\ge0\forall m\)

Do đó, phương trình luôn có nghiệm với mọi m

Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m}{1}=-2m\\x_1\cdot x_2=\dfrac{2m-1}{1}=2m-1\end{matrix}\right.\)

a) Ta có: \(x_1+x_2=-1\)

\(\Leftrightarrow-2m=-1\)

hay \(m=\dfrac{1}{2}\)

b) Ta có: \(x_1^2+x_2^2=13\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)

\(\Leftrightarrow\left(-2m\right)^2-2\cdot\left(2m-1\right)=13\)

\(\Leftrightarrow4m^2-4m+2-13=0\)

\(\Leftrightarrow4m^2-4m+1-12=0\)

\(\Leftrightarrow\left(2m-1\right)^2=12\)

\(\Leftrightarrow\left[{}\begin{matrix}2m-1=2\sqrt{3}\\2m-1=-2\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m=2\sqrt{3}+1\\2m=-2\sqrt{3}+1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{2\sqrt{3}+1}{2}\\m=\dfrac{-2\sqrt{3}+1}{2}\end{matrix}\right.\)

Phạm Tuân
Xem chi tiết
Tống Thị Hồng Nhung
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2023 lúc 22:06

b: x1=3x2 và x1+x2=2m-2

=>3x2+x2=2m-2 và x1=3x2

=>x2=0,5m-0,5 và x1=1,5m-1,5

x1*x2=-2m

=>-2m=(0,5m-0,5)(1,5m-1,5)

=>-2m=0,75(m^2-2m+1)

=>0,75m^2-1,5m+0,75+2m=0

=>\(m\in\varnothing\)

c: x1/x2=3

x1+x2=2m-2

=>x1=3x2 và x1+x2=2m-2

Cái này tương tự câu b nên kết quả vẫn là ko có m thỏa mãn

nguyenminhngocanh
Xem chi tiết