Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Huyền Anh
Xem chi tiết
Luân Đào
21 tháng 5 2019 lúc 19:02

a.

\(A=\frac{1}{ab}+\frac{1}{a^2+b^2}=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\)

\(\ge\frac{4}{a^2+2ab+b^2}+\frac{1}{2ab}\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=6\)

Dấu "=" khi \(a=b=\frac{1}{2}\)

b.

\(B=\frac{2}{ab}+\frac{3}{a^2+b^2}=3\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\)

\(\ge3\cdot\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=14\)

Dấu "=" khi \(a=b=\frac{1}{2}\)

c.

Ta có:

\(x^2+y^2\ge2xy\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\) với mọi x,y

Áp dụng ta có:

\(C=\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\ge\frac{\left(a+b+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(1+\frac{4}{a+b}\right)^2}{2}=\frac{25}{2}\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

2.

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2\right]\ge\left(\sqrt{x}\cdot\frac{a}{\sqrt{x}}+\sqrt{y}\cdot\frac{b}{\sqrt{y}}\right)^2\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{a^2}{x}+\frac{b^2}{y}\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

Áp dụng nó ta chứng minh được:

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

Áp dụng vào bài làm:

\(D=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\)

\(\ge\frac{\left(a+b+c\right)^2}{ab+ca+bc+ab+ca+bc}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

Trần Văn Quân
Xem chi tiết
Ngocmai
Xem chi tiết
An Vy
Xem chi tiết
Thảo Nguyên Xanh
Xem chi tiết
alibaba nguyễn
25 tháng 10 2017 lúc 8:31

Đề bị thiếu rồi. Đáng lẽ phải có a + b = ??? đấy nữa chứ.

Nguyễn Văn Vũ
Xem chi tiết
Thiên An
1 tháng 7 2017 lúc 9:42

Ta có  \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=3.1=3\)  \(\Rightarrow a+b+c\ge\sqrt{3}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel

\(B=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{3}}{2}\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\\ab+bc+ca=1\end{cases}}\)  \(\Leftrightarrow\)  \(a=b=c=\frac{\sqrt{3}}{3}\)

Thảo Nguyên Xanh
Xem chi tiết
Trần Hữu Ngọc Minh
11 tháng 12 2017 lúc 0:53

bài này easy thôi:

Áp dụng BĐT schwarz ta có:

\(VT=\frac{a^4}{a\left(a^2+ab+b^2\right)}+\frac{b^4}{b\left(b^2+bc+c^2\right)}+\frac{c^4}{c\left(c^2+ac+a^2\right)}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ac+a^2\right)}.\)

Mặt khác \(a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ac+a^2\right)\)\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right).\)

nên ta có:\(VT\ge\frac{a^2+b^2+c^2}{a+b+c}=a^2+b^2+c^2.\)

Mà ta có BĐT cơ bản là:\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2.\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge1\Leftrightarrow a^2+b^2+c^2\ge\frac{1}{3}.\)

Do đó:\(VT\ge a^2+b^2+c^2\ge\frac{1}{3}.\)

Vậy Min là \(\frac{1}{3}.\)Dấu = xảy ra khi \(a=b=c=\frac{1}{3}.\)

phan thị minh anh
Xem chi tiết
Hoàng Lê Bảo Ngọc
11 tháng 8 2016 lúc 19:36

Đặt \(x=\frac{a}{b}+\frac{b}{a}\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}=x^2-2\)

Xét mẫu thức : \(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)=x^2-x-2=\left(x+1\right)\left(x-2\right)\)

Thay \(x=\frac{a}{b}+\frac{b}{a}\) được mẫu thức : \(\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{a}{b}+\frac{b}{a}-2\right)=\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{ab}\)

Ta có : \(P=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)}=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{a^2b^2}}{\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{ab}}\)

\(=\frac{\left(a-b\right)^2}{a^2b^2}.\frac{ab}{\left(a-b\right)^2}=\frac{1}{ab}\) (đpcm)

b) Áp dụng bđt Cauchy : 

\(1=4a+b+\sqrt{ab}\ge2\sqrt{4a.b}+\sqrt{ab}\)

\(\Rightarrow5\sqrt{ab}\le1\Rightarrow ab\le\frac{1}{25}\)

\(\Rightarrow P=\frac{1}{ab}\ge25\) . Dấu "=" xảy ra khi \(\begin{cases}4a+b+\sqrt{ab}=1\\4a=b\end{cases}\)

\(\Leftrightarrow\begin{cases}a=\frac{1}{10}\\b=\frac{2}{5}\end{cases}\) 

Vậy P đạt giá trị nhỏ nhất bằng 25 tại \(\left(a;b\right)=\left(\frac{1}{10};\frac{2}{5}\right)\)

 

Tuyển Trần Thị
Xem chi tiết
vũ tiền châu
4 tháng 2 2018 lúc 0:01

từ giả thiết, ta có \(\frac{a^2}{b}+\frac{b^2}{a}\le1\)

Mà \(\frac{a^2}{b}+\frac{b^2}{a}\ge\frac{\left(a+b\right)^2}{a+b}=a+b\Rightarrow a+b\le1\)

Mà từ BĐT cô-si, ta luôn có \(\left(a+b\right)^3\ge4ab\left(a+b\right)\ge4\left(a^3+b^3\right)\left(a+b\right)\Rightarrow\frac{\left(a+b\right)^3}{4}\ge\left(a^3+b^3\right)\left(a+b\right)\)

Mà áp dụng BĐT Bu-nhi-a , ta có \(\left(a^3+b^3\right)\left(a+b\right)\ge\left(a^2+b^2\right)^2\)

=>\(\frac{\left(a+b\right)^3}{4}\ge\left(a^2+b^2\right)^2\Rightarrow\frac{1}{4}\ge\left(a^2+b^2\right)^2\Rightarrow a^2+b^2\le\frac{1}{2}\)

Mà \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{4}{2+a^2+b^2}=\frac{4}{2+\frac{1}{2}}=\frac{8}{5}\)

Dấu = xảy ra ,=> a=b=1/2

^_^

Trần Hữu Ngọc Minh
4 tháng 2 2018 lúc 12:01

\(a^3+b^3\le ab\Leftrightarrow ab\left(a+b\right)\le ab\Leftrightarrow a+b\le1.\).Ta có: \(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}.\)

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{4}{2+a^2+b^2}=\frac{4}{2+\left(a+b\right)^2-2ab}\ge\frac{4}{2+1-\frac{1}{2}}\ge\frac{8}{5}.\)

Dấu bằng xảy ra khi a=b=1/2.

vũ tiền châu
4 tháng 2 2018 lúc 12:16

Trần Hữu Ngọc Minh, cho t hỏi 

\(ab\le\frac{1}{4}\Rightarrow-2ab\ge-\frac{1}{2}\)

Tức là k đánh giá được mẫu !!!?