Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thị Thư Anh
Xem chi tiết
Thắng  Hoàng
20 tháng 1 2018 lúc 13:41

Tham khảo bài này nha!

Hình thang ABCD (AB//CD) có AC va BD cắt nhau tại O , AD và BC cắt nhau tại K . Chứng minh rằng OK đi qua trun?

 Tứ giác ABCD là hình thang nên:AB//CD. 
Gọi M, N lần lượt là giao điểm của KO với AB,CD. 
Áp dụng định lý talet ta có: 
AM/DN=MB/NC(=KM/KN) 
=(AM+MB)/(CN+ND) (t/c dãy tỉ số bằng nhau) =AB/DC. 
=AO/OC=AM/NC. 
Vậy AM/DN=AM/NC hay DN=NC. 
tương tự MB=MA. 
hay ta có OK đi qua trung điểm của AB và CD.

Online  Math
20 tháng 1 2018 lúc 13:42

:  Tứ giác ABCD là hình thang nên:AB//CD. 
Gọi M, N lần lượt là giao điểm của KO với AB,CD. 
Áp dụng định lý talet ta có: 
AM/DN=MB/NC(=KM/KN) 
=(AM+MB)/(CN+ND) (t/c dãy tỉ số bằng nhau) =AB/DC. 
=AO/OC=AM/NC. 
Vậy AM/DN=AM/NC hay DN=NC. 
tương tự MB=MA. 
 ta có OK đi qua trung điểm của AB và CD.

Linh
Xem chi tiết
Trần Tuấn Hoàng
6 tháng 2 2022 lúc 11:35

c. -Xét △ADC có: OM//DC (gt).

\(\Rightarrow\dfrac{MO}{DC}=\dfrac{AO}{AC}\) (định lí Ta-let).

\(\Rightarrow\dfrac{DC}{MO}=\dfrac{AC}{AO}\)

\(\Rightarrow\dfrac{DC}{OM}-1=\dfrac{OC}{AO}\) (1).

-Xét △BDC có: ON//DC (gt).

\(\Rightarrow\dfrac{ON}{DC}=\dfrac{BO}{BD}\) (định lí Ta-let).

\(\Rightarrow\dfrac{DC}{ON}=\dfrac{BD}{BO}\)

\(\Rightarrow\dfrac{DC}{ON}-1=\dfrac{OD}{BO}\)

-Xét △ABO có: AB//DC (gt).

\(\Rightarrow\dfrac{OD}{BO}=\dfrac{OC}{OA}=\dfrac{DC}{AB}\) (3)

-Từ (1), (2),(3) suy ra:

\(\dfrac{DC}{OM}-1=\dfrac{DC}{ON}-1=\dfrac{DC}{AB}\)

\(\Rightarrow\dfrac{DC}{OM}=\dfrac{DC}{ON}=\dfrac{DC}{AB}+1=\dfrac{AB+DC}{AB}\)

\(\Rightarrow\dfrac{1}{OM}=\dfrac{1}{ON}=\dfrac{AB+DC}{AB.DC}=\dfrac{1}{AB}+\dfrac{1}{CD}\)

Nguyễn Lê Phước Thịnh
6 tháng 2 2022 lúc 11:15

a: Xét ΔAOB và ΔCOD có 

\(\widehat{OAB}=\widehat{OCD}\)

\(\widehat{AOB}=\widehat{COD}\)

Do đó: ΔAOB∼ΔCOD

Suy ra: \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}\)

hay \(OA\cdot OD=OB\cdot OC\)

b: \(\dfrac{OA}{OC}=\dfrac{AB}{CD}\)

\(\Leftrightarrow OA=\dfrac{1}{2}\cdot6=3\left(cm\right)\)

 

Zero Two
Xem chi tiết
Tuyết Hiii Ánh
Xem chi tiết
Nguyễn Hoàng Minh
18 tháng 9 2021 lúc 8:22

\(a,MN//DC\Rightarrow MN//AB\Rightarrow ABNM\) là hình thang

Ta có \(\left\{{}\begin{matrix}\widehat{AMN}=\widehat{ADC}\left(đồng.vị\right)\\\widehat{BNM}=\widehat{BCD}\left(đồng.vị\right)\\\widehat{ADC}=\widehat{BCD}\left(ABCD.là.hthang.cân\right)\end{matrix}\right.\Rightarrow\widehat{AMN}=\widehat{BNM}\)

\(\Rightarrow ABNM\) là hthang cân

\(b,\left\{{}\begin{matrix}DM=NC\left(hthang.cân.DMNC\right)\\\widehat{MDC}=\widehat{NCD}\left(hthang.cân.DMNC\right)\\Cạnh.DC.chung\end{matrix}\right.\Rightarrow\Delta DMC=\Delta CND\left(c.g.c\right)\\ \Rightarrow\widehat{NDC}=\widehat{MCD}\Rightarrow\Delta ODC.cân.tại.O\Rightarrow OC=OD\)

Ta có \(\left\{{}\begin{matrix}\widehat{ODC}=\widehat{OCD}\left(cm.trên\right)\\\widehat{ODC}=\widehat{ONM}\left(so.le.trong\right)\\\widehat{OCD}=\widehat{OMN}\left(so.le.trong\right)\end{matrix}\right.\Rightarrow\widehat{ONM}=\widehat{ONM}\)

\(\Rightarrow\Delta OMN.cân.tại.O\\ \Rightarrow OM=ON\)

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 2 2019 lúc 3:46

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét ∆ ADC và  ∆ BCD, ta có:

AD = BC (tính chất hình thang cân)

∠ (ADC) =  ∠ (BCD) (gt)

DC chung

Do đó:  ∆ ADC =  ∆ BCD (c.g.c) ⇒ ∠ C 1 =  ∠ D 1

Trong  ∆ OCD ta có:  ∠ C 1 =  ∠ D 1  ⇒  ∆ OCD cân tại O ⇒ OC = OD (1)

AC = BD (tính chất hình thang cân) ⇒ AO + OC = BO + OD (2)

Từ (1) và (2) suy ra: AO = BO.

Duyên Lương
Xem chi tiết
Huy Mai
Xem chi tiết
Trần Quốc Khanh
18 tháng 3 2020 lúc 14:38

câu a,b dễ quá

c/Có: \(\frac{2}{EF}=\frac{2}{2OE}=\frac{1}{OE}\)

Ta có: \(\frac{OE}{AB}=\frac{DE}{AD}\left(1\right),\frac{OE}{CD}=\frac{AE}{AD}\left(2\right)\).Cộng (1) và (2) đc

\(OE\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{DE+AE}{AD}\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OE}\)

Suy ra ĐPCM

Khách vãng lai đã xóa
Nguyễn Nam
Xem chi tiết
chuột michkey
Xem chi tiết