Cho P= \(\left(1-\frac{1}{2^2}\right)\)\(.\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right).....\left(1-\frac{1}{50^2}\right)\). So sánh P vs \(\frac{1}{2}\)
Cho \(P=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\). So sánh P với \(\frac{1}{2}\)
\(P=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{2499}{2500}\)
\(P=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)
\(P=\frac{\left(1.2.3...49\right)\left(3.4.5...51\right)}{\left(2.3.4...50\right)\left(2.3.4...50\right)}\)
\(P=\frac{1.51}{50.2}\)
\(P=\frac{51}{100}>\frac{1}{2}\)
Kết luận: \(P>\frac{1}{2}\)
So sánh các số :
\(\left(\frac{1}{2}\right)^1;\left(\frac{1}{3}\right)^{-1};\left(\frac{1}{2}\right)^2;\left(\frac{1}{4}\right)^{-1};\left(\frac{1}{3}\right)^{-2}\)
(1/2)^-1=2
(1/2)^-2=4
có 2<4
=>(1/2)^-1<(1/2)^-2
Ta có :
\(\left(\frac{1}{2}\right)^{-1}=\left(2^{-1}\right)^{-1}=2\)
\(\left(\frac{1}{3}\right)^{-1}=3\)
\(\left(\frac{1}{2}\right)^{-2}=\left(2^{-1}\right)^{-2}=2^2=4\)
\(\left(\frac{1}{4}\right)^{-1}=\left(4^{-1}\right)^{-1}=4\)
\(\left(\frac{1}{3}\right)^{-2}=\left(3^{-1}\right)^{-2}=3^2=9\)
Do đó ta có :
\(\left(\frac{1}{2}\right)^{-1}< \left(\frac{1}{3}\right)^{-1}< \left(\frac{1}{2}\right)^{-2}=\left(\frac{1}{4}\right)^{-1}< \left(\frac{1}{3}\right)^{-2}\)
Cho A=\(\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2013^2}-1\right)..\left(\frac{1}{2014^2}-1\right)\&B=\frac{1}{2}\) so sánh A và B
Ta có
\(A=\frac{\left(1^2-2^2\right)\left(1^2-3^2\right).....\left(1^2-2014^2\right)}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)
\(\Leftrightarrow A=\frac{\left(-1\right)3\left(-2\right)4.....\left(-2013\right)2015}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)
\(\Leftrightarrow A=\frac{\left[\left(-1\right)\left(-2\right)...\left(-2013\right)\right]\left(3.4.5...2015\right)}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)
\(\Leftrightarrow A=\frac{\left(-1\right)2015}{2014.2}=-\frac{2015}{4028}< -\frac{2014}{4028}=-\frac{1}{2}\)
=> A<-1/2
cho \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2016^2}-1\right)\left(\frac{1}{2017^2}-1\right)\)và b=-1/2
Hãy so sánh A với B
Ta có:
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)..\left(\frac{1}{2017^2}-1\right)\)
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{2017^2}-1\right)\)
\(A=\left(-\frac{3}{2^2}\right)\left(\frac{-8}{3^2}\right)\left(\frac{-15}{4^2}\right)...\left(\frac{-\left(1-2017^2\right)}{2017^2}\right)\)
( có 2016 thừa số)
\(A=\frac{3.8.15...\left(1-2017^2\right)}{2^2.3^2.4^2...2017^2}\)
\(A=\frac{\left(1.3\right)\left(2.4\right)...\left(2016.2018\right)}{\left(2.2\right)\left(3.3\right)\left(4.4\right)...\left(2017.2017\right)}\)
\(A=\frac{\left(1.2.3....2016\right)\left(3.4.5....2018\right)}{\left(2.3.4...2017\right)\left(2.3.4...2017\right)}\)
\(A=\frac{1.2018}{2017.2}\)
\(A=\frac{1009}{2017}\)
Ta có : \(\frac{1009}{2017}>0\) (vì tử và mẫu cùng dấu)
\(\frac{-1}{2}< 0\) (vì tử và mẫu khác dấu)
Vậy A>B
So sánh : \(\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{1000^2}-1\right)Và\frac{-1}{2}\)
Giup mình vs mấy bạn ơi
Bài 4 : Tính
A=1\(\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{100^2}-1\right)\)
SO SÁNH A vs \(\frac{-1}{2}\)
1. tính A= \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{899}{30^2}\)
2. tính B= \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}...\frac{30}{62}.\frac{31}{64}\)
3. So sánh C= \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)với \(\frac{1}{21}\)
4. So sánh D= \(\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{100}\right)\)với \(\frac{11}{19}\)
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)
\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)
Cho \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)......\left(\frac{1}{100^2}-1\right)\)
Hãy so sánh A với 1/2
A>1/2
Xin lỗi mình đang bận để lúc khác mình sẽ giải chi tiết
Cho \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2013^2}-1\right)\left(\frac{1}{2014^2}-1\right)\)
Và B =\(\frac{1}{2}\)
So sánh A và B
A có: \(\frac{2014-2}{3-2}+1=2013\) ( thừa số )
Ta thấy mỗi thừa số của A đều có dạng \(\frac{1}{n^2}-1\)với \(n\inℕ^∗\)và \(n>1\)
Có \(\frac{1}{n^2}< 1\Rightarrow\frac{1}{n^2}-1< 1-1=0\)
=> Mỗi thừa số của A đều nhỏ hơn 0
=> A là tích của 2013 thừa số nhỏ hơn 0
Mà 2013 là số lẻ
=> A < 0
Mà B = \(\frac{1}{2}\)> 0
=> A < B