Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Dĩ Thâm
Xem chi tiết
Hà Dĩ Thâm
Xem chi tiết
khôi nguyễn đăng
24 tháng 3 2016 lúc 21:41

x=2

y=2

gtln=4

tra minh
Xem chi tiết
Thắng Nguyễn
3 tháng 7 2016 lúc 19:38

B=-x2-y2+xy+2x+2y

4B=-(4x2+4y2-4xy-8x-8y)

=-[4x2-4x(y+2)+(y+2)2+3(y-2)2-16]

=-[(2x-y-2)2+(y-2)2]+4=<4

Dấu = khi x=y=2

Vậy Amax=4 <=>x=y=2

Học Sinh Giỏi
Xem chi tiết
Trên con đường thành côn...
9 tháng 8 2021 lúc 10:45

undefinedundefined

Nhàn Phạm Thị Thanh
Xem chi tiết
Đoàn Đức Hà
15 tháng 7 2021 lúc 15:40

a) \(xy+3x-2y-7=0\)

\(\Leftrightarrow x\left(y+3\right)-2y-6=1\)

\(\Leftrightarrow\left(x-2\right)\left(y+3\right)=1\)

mà \(x,y\)nguyên nên \(x-2,y+3\)là ước của \(1\)nên ta có bảng giá trị: 

x-21-1
y+31-1
x3-1
y-2-4

Vậy phương trình có nghiệm là: \(\left(3,-2\right),\left(-1,-4\right)\).

b) \(5y-2x^2-2y^2+2=0\)

\(\Leftrightarrow16x^2+16y^2-40y-16=0\)

\(\Leftrightarrow\left(4x\right)^2+\left(4y-5\right)^2=41\)

Vì \(x,y\)nguyên nên \(\left(4x\right)^2,\left(4y-5\right)^2\)là các số chính phương.

Phân tích \(41\)thành tổng hai số chính phương có cách duy nhất bằng \(41=16+25\)

mà \(\left(4x\right)^2⋮16\)nên ta có: 

\(\hept{\begin{cases}\left(4x\right)^2=16\\\left(4y-5\right)^2=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=0\end{cases}}\)(vì \(y\)nguyên)

Khách vãng lai đã xóa
Băng Mikage
Xem chi tiết
Nguyễn Anh Quân
5 tháng 1 2018 lúc 21:59

-M = x^2+y^2-xy-2x-2y

-4M = 4x^2+4y^2-4xy-8x-8y

      = [ (4x^2-4xy+y^2) - 2.(2x-y).2 + 4 ] + (3y^2-12y+12)-16

      = [ (2x-y)^2 - 2.(2x-y).2 + 4 ] + 3.(y^2-4y+4) - 16

      = (2x-y-2)^2 + 3.(y-2)^2 - 16 >= -16 => M < = 4

Dấu "=" xảy ra <=> 2x-y-2 = 0 và y-2 = 0 <=> x = y = 2

Vậy ............

Tk mk nha

Hoàng Thị Mai Linh
Xem chi tiết
dam quoc phú
Xem chi tiết
Zr_P114
23 tháng 12 2020 lúc 22:01

B) Ta có: 2x-2y-x2+2xy-y2

⇔ 2(x-y)-(x2-2xy+y2)

⇔ 2(x-y)-(x-y)2

⇔ (x-y)(2-x+y)

Đúng thì tick nhé

Băng Mikage
Xem chi tiết