tìm một số tự nhiên có hai chữ số , biết rằng hai lần chữ số hàng chục lớn hơn chữ số hàng đơn vị là 6 đơn vị . nếu đổi vị trí hai chữ số mới bằng \(\frac{5}{6}\)số đã cho
Gọi số cần tìm là \(\overline{ab}\)(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a\le10\\0\le b\le10\end{matrix}\right.\))
Vì ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị là 6 đơn vị nên ta có phương trình: \(3a-b=6\)(1)
Vì khi viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới lớn hơn số cũ là 36 đơn vị nên ta có phương trình: \(10b+a-\left(10a+b\right)=36\)
\(\Leftrightarrow10b+a-10a-b=36\)
\(\Leftrightarrow-9a+9b=36\)
\(\Leftrightarrow a-b=-4\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}3a-b=6\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=10\\a-b=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=a+4=5+4=9\end{matrix}\right.\)(thỏa ĐK)
Vậy: Số cần tìm là 59
tìm số tự nhiên có hai chữ số , biết rằng chữ số hàng đơn vị lớn hơn chữ số hàng chục là 4 đơn vị và nếu đổi chỗ hai chữ số cho nhau thì được số mới bằng 17/5 số ban đầu
Bài 2 : (2.0 điểm) Tìm một số tự nhiên có hai chữ số biết rằng hiệu hai chữ số hàng đơn vị và hàng chục là 5 và nếu đổi chỗ hai chữ số của số đã cho thì được số mới hơn số đã cho 45 đơn vị
bài 1.
một số tự nhiên có hai chữ số trong đó chữ số hàng chục gấp ba lần chữ số hàng đơn vị , nếu đổi chỗ hai chữ số này cho nhau thì được số mới nhỏ hơn số đã cho 18 đơn vị. tìm số đó.
bài 2.
tìm số tự nhiên có hai chữ số biết rằng tổng các chữ số của nó bằng 10 nếu đổi chỗ hai chữ số cho nhau thì số ấy giảm đi 36 đơn vị.
bài 3.
tìm số tự nhiên biết rằng chữ số hàng đơn vị của số đó bằng 5 và nếu xóa chữ số 5 thì số ấy giảm đi 1787 đơn vị
giúp toi vs:>
Cho số tự nhiên có hai chữ số. Biết tổng bình phương chữ số hàng chục và bình phương chữ số hàng đơn vị là 100. Nếu đổi chữ số hàng chục và chữ số hàng đơn vị cho nhau thì được số mới lớn hơn số đã cho 18 đơn vị. Tìm số đã cho?
khômngfhtgfhjfhtdAiuem hông
Tìm số tự nhiên có hai chữ số, biết rằng năm lần chữ số hàng chục lớn hơn chữ số hàng đơn vị 12 đơn vị, và nếu viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới (có hai chữ số) lớn hơn số cũ 36 đơn vị.
Số đó là: .
gọi số cần tìm là \(\overline{xy}\)
ta có hệ
\(\hept{\begin{cases}5x-y=12\\\left(10y+x\right)-\left(10x+y\right)=36\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5x-y=12\\-9x+9y=36\end{cases}=>\hept{\begin{cases}45x-9y=108\\-45x+45y=180\end{cases}=>\hept{\begin{cases}36y=288\\5x-y=12\end{cases}=>\hept{\begin{cases}y=8\\5x=20\end{cases}}}}}\)
\(\Rightarrow\hept{\begin{cases}y=8\\x=4\end{cases}}\)
zậy số cần tìm là 48
Bài 1 : Tìm một số tự nhiên có hai chữ số, biết rằng nếu viết chữ số 0 xen giữa chữ số hàng chục và hàng đơn vị của số đó ta được số lớn gấp 10 lần số đã cho, nếu viết thêm chữ số 1 vào bên trái số vừa nhận được thì số đó lại tăng lên 3 lần.
Bài 2 : Khi xóa bỏ chữ số 5 ở hàng đơn vị của một số tự nhiên ta được số mới kém số ban đầu 320 đơn vị. Tìm số đã cho.
Bài 3 : Tìm số có bốn chữ số biết rằng nếu xóa bỏ hai chữ số 1 ở hàng chục và chữ số 8 ở hàng đơn vị của số đó ta được số mới kém số ban đầu 2889 đơn vị.
Bài 4 : Tìm một số có ba chữ số biết rằng nếu xóa đi chữ số 0 ở tận cùng bên phải số đó ta được số mới ( có hai chữ số ). Tổng hai số đó là 990.
Bài 5 : Cho một số có ba chữ số, chữ số hàng đơn vị là 3. Nếu xóa chữ số 3 đó ta được số mới kém số phải tìm là 408 đơn vị. Tìm số có ba chữ số ban đầu.
Bài 6 : Tổng hai số là 623. Số lớn có hàng đơn vị là 7. Nếu xóa chữ số 7 của số lớn ta được số bé. Tìm hai số đó.
cho số tự nhiên có hai chữ số, tổng của chữ số hàng chục và chữ số hàng đợn vị bằng 14 nếu đổi chữ số hàng chục và chữ số hàng đơn vị cho nhau thì được số mới lớn hơn số đã cho 18 đơn vị tìm số đã cho
iu chị chí \(\overline{ }\)lương
Bài 5.Cho một số tự nhiên có hai chữ số. Biết rằng tổng của chữ số hàng chục và hai lần chữ số hàng đơn vị là 12. Nếu thêm số0 vào giữa hai chữ số thì ta được một số mới có ba chữ số lớn hơn số ban đầu 180 đơn vị. Tìm số ban đầu.
Lời giải:
Gọi số cần tìm là $\overline{ab}$. Điều kiện:.......
Theo bài ra ta có:
$a+2b=12(1)$
$\overline{a0b}-\overline{ab}=180$
$\Leftrightarrow 100a+b-(10a+b)=180$
$\Leftrightarrow 90a=180$
$\Leftrightarrow a=2(2)$
Từ $(1); (2)\Rightarrow b=5$
Vậy số cần tìm là $25$