Cho biểu thức \(P=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{399}{400}\). Chứng tỏ rằng \(P< \frac{1}{20}\)
Cho biểu thức \(P=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{399}{400}.\)Chứng tỏ rằng\(P< \frac{1}{20}\)
P=\(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\cdot\frac{399}{400}\)
Chứng tỏ rằng \(P< \frac{1}{20}\)
\(P=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{399}{400}\)
\(\Rightarrow P< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{400}{401}\)
\(\Rightarrow P^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{399}{400}.\frac{400}{401}\)
\(\Rightarrow P^2< \frac{1}{401}< \frac{1}{400}=\frac{1}{20^2}\)
\(\Rightarrow P< \frac{1}{20}\)
P=1/2.3/4.5/6.....399/400
=>P<2/3.4/5......400/401
=>P2<1/2.2/3.3/4......398/399.399/400.400/401
=1/401<1/400=(1/20)2
=>P<1/20
thanks vì trả lời câu hỏi tớ nhá
NGUYỄN TUẤN CHÂU KIỆT
Chứng minh rằng:\(\frac{-1}{2}\times\frac{-3}{4}\times\frac{-5}{6}\times...\times\frac{-399}{400}< \frac{1}{20}\)
\(\text{Cho }P=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot\frac{5}{6}\cdot\cdot\cdot\frac{399}{400}\text{ Chứng minh }P< \frac{1}{20}\)
\(P=\frac{1}{2}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}......\frac{399}{400}\)
\(P=\frac{1.3.4.5....399}{2.4.5.6.....400}\)
\(P=\frac{1.3}{2.400}\)
\(P=\frac{3}{800}\)
Vì \(\frac{3}{800}< \frac{40}{800}\)
\(\Rightarrow P< \frac{40}{800}\)
\(\Rightarrow P< \frac{1}{20}\left(đpcm\right)\)
Ta co:
\(P=\frac{1}{2}.\frac{3.4.5...399}{4.5.6...400}\)
\(\Leftrightarrow P=\frac{1}{2}.\frac{3}{400}=\frac{3}{800}< \frac{3}{600}=\frac{1}{20}\)
\(\Rightarrow P< \frac{1}{20}\left(dpcm\right).\)
\(P=\frac{1}{2}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}......\frac{399}{400}\)
\(P=\frac{1.3.4.5.....399}{2.4.5.6....400}\)
\(P=\frac{1.3}{2.400}\)
\(P=\frac{3}{800}\)
\(V\text{ì}\frac{3}{800}< \frac{40}{800}\)
\(\Rightarrow P< \frac{40}{800}\)
\(\Rightarrow P< \frac{1}{20}\left(\text{đ}pcm\right)\)
Chứng tỏ rằng:
\(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}+\frac{1}{400}>\frac{1}{2}\)
Vì \(\frac{1}{201}>\frac{1}{400}\)
\(\frac{1}{202}>\frac{1}{400}\)
\(\frac{1}{203}>\frac{1}{400}\)
.................
\(\frac{1}{399}>\frac{1}{400}\)
⇒ \(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)(199 số hạng \(\frac{1}{400}\))
⇒ \(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}+\frac{1}{400}>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)(200 số hạng \(\frac{1}{400}\)) = 200.\(\frac{1}{400}\)=\(\frac{1}{2}\)
⇒ A > \(\frac{1}{2}\)
Vậy A > \(\frac{1}{2}\) (ĐPCM)
Cho A = \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{399}{400}\).
Chứng tỏ rằng A > 18
A=(1-\(\frac{1}{4}\))+(1-\(\frac{1}{9}\))+(1-\(\frac{1}{16}\))+...+(1-\(\frac{1}{400}\)).
A=19-(\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{20^2}\))
Ta thấy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{20^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}<1\)
=>A>19-1=18(đpcm)
Bài 4 :
a) Tính giá trị của biểu thức :
\(A=\left(\frac{1\frac{11}{31}\cdot4\frac{3}{7}-\left(15-6\frac{1}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-5\frac{1}{3}\right)}\cdot\left(-1\frac{14}{93}\right)\right)\cdot\frac{31}{50}\)
b) Chứng tỏ rằng : \(B=1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{3^2}-...-\frac{1}{2004^2}>\frac{1}{2004}\)
1/ Chứng tỏ rằng \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}<1\)
2/ Chứng tỏ rằng \(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}<1\)
3/ Rút gọn biểu thức \(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
4/ Tính nhanh\(\frac{\frac{4}{2010}+\frac{4}{2011}-\frac{4}{2012}}{\frac{5}{2010}+\frac{5}{2011}-\frac{5}{2012}}-\frac{\frac{1}{123}-\frac{1}{19}+\frac{1}{371}-\frac{1}{5}}{-\frac{5}{123}+\frac{5}{19}-\frac{5}{371}+1}\)
GIÚP ĐƯỢC CÂU NÀO THÌ GIÚP NHÉ, MÌNH TICK CHO
c)\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2012}}\)
\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{2012}}\right)\)
\(2A=2+1+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2011}}\)
\(2A-A=\left(2+1+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....\frac{1}{2^{2012}}\right)\)
\(A=2-\frac{1}{2^{2012}}\)
1/
A=1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
A=1/1-1/100
Vì 1/100>0
-->1/1-1/100<1
-->A<1
a)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{1}-\frac{1}{100}\)=\(\frac{99}{100}<1\)
Bài 1: Tính giá trị biểu thức:
\(A=\frac{4}{3}+\frac{4}{15}+\frac{4}{35}+...+\frac{4}{9999}\)
Bài 2: Cho \(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}\)
Chứng tỏ: \(\frac{2}{5}< B=\frac{8}{9}\)
Bài 3: Tính giá trị biểu thức:
\(C=\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-...-\frac{1}{9900}\)