Cho đa thức h(x) thỏa mãn x.h(x+1) = (x+2).h(x)
Chứng minh rằng đa thức h(x) có ít nhất 2 nghiệm
Cho đa thức h(x) thỏa mẵn x.h(x+1) = (x+2).h(x). Chứng minh rằng đa thức h(x) có ít nhất 2 nghiệm.
Cho đa thức h(x) thoả mãn \(x.h\left(x+1\right)=\left(x+2\right).h\left(x\right)\). Chứng minh rằng đa thức h(x) có ít nhất hai nghiệm
Cho đa thức h(x) thoả mãn \(x.h\left(x+1\right)=\left(x+2\right).h\left(x\right)\). Chứng minh rằng đa thức h(x) có ít nhất hai nghiệm
Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng
Nếu f(a) = 0 => a là nghiệm của f(x).
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x.
+ Thay x = 0 vào (1) ta được
0.f(0 + 1) = (0 + 2).f(0)
=> 0 = 2.f(0)
=> f(0) = 0
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2)
+ Thay x = -2 vào (1) ta được:
(-2).f(-2 + 1) = (-2 + 2).f(-2)
=> (-2).f(-1) = 0.f(-2)
=> (-2).f(-1) = 0
=> f(-1) = 0
=> x = -1 là 1 nghiệm của đa thức trên (3)
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2
Cho đa thức h(x) thỏa mãn: x*h(x+1)=(x+2)*h(x)
Chứng minh rằng đa thức h(x) có ít nhất hai nghiệm
cho đa thức h(x) thỏa mãn x.h(x+1) =(x+2).h(x)
cmr ;đa thức h(x)có ít nhất 2nghiệm
thì giả xử đa thức có hơn 2 nghiệm là x1 x2 x3 từng cặp môt khác nhau roi sau đo ráp vào rồi thưc hien là dc
thì giả xử đa thức có hơn 2 nghiệm là x1 x2 x3 từng cặp môt khác nhau roi sau đo ráp vào rồi thưc hien là dc
thì giả xử đa thức có hơn 2 nghiệm là x1 x2 x3 từng cặp môt khác nhau roi sau đo ráp vào rồi thưc hien là dc
Cho đa thức h(x) thỏa mãn \(x.h\left(x+1\right)=\left(x+2\right).h\left(x\right)\) có ít nhất 2 nghiệm.
Ta có:
Với x=0.=> 0.h(0+1) = (0+2). h(0) => 2. h(0)= 0 . Mà 2 khác 0 nên h(0)= 0 . => o là nghiệm của h(x).
Với x=-2=> -2. h(-2+1)= (-2+2). h(-2) => -2.h(-1)=0.=> h(-1)= 0. => x=-1 là ngiệm của h(x).
Vậy đa thức h(x) có ít nhất 2 nghiệm. Nhớ k đúng cho mìn nha. Thanks!!
Từ đề bài \(\Rightarrow0h\left(0+1\right)=\left(0+2\right)h\left(0\right)\Rightarrow h\left(0\right)=0\)
Tương tự \(-2h\left(-2+1\right)=\left(-2+2\right)h\left(-2\right)\Rightarrow h\left(-1\right)=0\)
Vậy h(x) có ít nhất 2 nghiệm là 0 và -1
Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
Có đa thức A (x) thỏa mãn (x-4) A (x) = (x+2) A (x-1) chứng minh rằng đa thức A (x) có ít nhất 2 nghiệm phân biệt
Xét (x-4)A(x)=(x+2)A(x-1)
Thay x=4 vào đa thức (x-4)A(x)=(x+2)A(x-1) ta có:
(4-4)A(4)=(4+2)A(4-1)
=>0A(4)=6A(3)
=>0= A(3)
=> x=3 là một nghiệm của đa thức A(x) (1)
Thay x=-2 vào đa thức (x-4)A(x)=(x+2)A(x-1) ta có:
(-2-4)A(-2)=(-2+2)A(-2-1)
=>-6A(-2)=0A(-3)
=>-6A(-2)=0
=>A(-2)=0
=> x=-2 là một nghiệm của đa thức A(x) (2)
Từ (1) và (2)=> đa thức A(x) có ít nhất 2 nghiệm