Cho biết: x(x+1)(x+2)(x+3)....(x+2017)=2017. Tìm x (x>0)chứng tỏ rằng x> \(\frac{1}{2016!}\)
cho đẳng thức x.(x+1).(x+2).(x+3).....(x+2017)=2017 .chứng tỏ x<1/2016!
GIÚP MÌNH VỚI CÁC BẠN
Cho x(x+14)(x+2)(x+3)(...)(x+2017)=2017(với x>0). Chứng minh rằng x<\(\frac{1}{2017!}\)
Cho biết x = 1 +2 +2*2
+2*3
+... + 2*2016
+2*2017
; y = 2*2018
Chứng tỏ x, y là hai số tự nhiên liên tiếpCho biết x = 1 +2 +2*2
+2*3
+... + 2*2016
+2*2017
; y = 2*2018
1) Cho đa thức f(x) =(x+2)2017. Biết rằng khi triển khai và thu gọn , ta được f(x) = a2017x2017 + a2016x2016 + .........+ a1x + a0
Tính tổng S = a0 +a1 +a2 + . ............+a2016 +a 2017.
Ta có:
f ( 1 ) = \(a_0+a_1+....+a_{2017}\)
mà f ( x) = \(\left(x+2\right)^{2017}\)
=> \(S=f\left(1\right)=3^{2017}\)
Tìm x,biết:
\(\frac{x+4}{2014}+\frac{x+3}{2015}=\frac{x+2}{2016}+\frac{x+1}{2017}\)
\(\left(\frac{x+4}{2014}+1\right)+\left(\frac{x+3}{2015}+1\right)=\left(\frac{x+2}{2016}+1\right)+\left(\frac{x+1}{2017}+1\right)\)
\(\frac{x+2018}{2014}+\frac{x+2018}{2015}-\frac{x+2018}{2016}+\frac{x+2018}{2017}=0\)
\(x+2018.\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\right)=0\)
\(\Rightarrow x+2018=0\)
\(\Rightarrow x=-2018\)
\(\frac{x+4}{2014}+\frac{x+3}{2015}=\frac{x+2}{2016}+\)\(\frac{x+1}{2017}\)
\(\Rightarrow\left(\frac{x+4}{2014}+1\right)+\left(\frac{x+3}{2015}+1\right)=\left(\frac{x+2}{2016}+1\right)+\left(\frac{x+1}{2017}+1\right)\)
\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2015}=\frac{x+2018}{2016}+\frac{x+2018}{2017}\)
\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2015}-\frac{x+2018}{2016}-\frac{x+2018}{2017}=0\)
\(\Rightarrow\left(x+2018\right)\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)=0\)
\(M\text{à:}\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2016}-\frac{1}{2017}\ne0\)
\(\Rightarrow x+2018=0\Rightarrow x=-2018\)
\(\left(\frac{x+4}{2014}+1\right)+\left(\frac{x+3}{2015}+1\right)=\left(\frac{x+2}{2016}+1\right)+\left(\frac{x+1}{2017}+1\right)\)
\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2015}=\frac{x+2018}{2016}+\frac{x+2018}{2017}\)
\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2015}-\frac{x+2018}{2016}-\frac{x+2018}{2017}=0\)
\(\Rightarrow\left(x+2018\right).\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2016}-\frac{1}{2017}\right)=0\)
=> x+2018=0
=> x=-2018
Tìm x biết:
\(\frac{x-1}{2017}+\frac{x-2}{2016}-\frac{x-3}{2015}=\frac{x-4}{2014}\)
Tìm x biết:
\(\frac{x}{2018}+\frac{x+1}{2017}+\frac{x+2}{2016}+\frac{x+3}{2015}=-4\)
Tìm x biết:
\(\frac{x}{2018}+\frac{x+1}{2017}+\frac{x+2}{2016}+\frac{x+3}{2015}=-4\)
Giải:Ta có:\(\frac{x}{2018}+\frac{x+1}{2017}+\frac{x+2}{2016}+\frac{x+3}{2015}=-4\)
\(\Rightarrow\frac{x}{2018}+1+\frac{x+1}{2017}+1+\frac{x+2}{2016}+1+\frac{x+3}{2015}+1=0\)
\(\Rightarrow\frac{x+2018}{2018}+\frac{x+2018}{2017}+\frac{x+2018}{2016}+\frac{x+2018}{2015}=0\)
\(\Rightarrow\left(x+2018\right)\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}\right)=0\)
\(\Rightarrow x+2018=0\) vì \(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}>0\)
\(\Rightarrow x=-2018\)
Vậy x=-2018 thỏa mãn
x2018 +x+12017 +x+22016 +x+32015 =−4
⇒x2018 +1+x+12017 +1+x+22016 +1+x+32015 +1=0
⇒x+20182018 +x+20182017 +x+20182016 +x+20182015 =0
⇒(x+2018)(12018 +12017 +12016 +12015 )=0
⇒x+2018=0 vì 12018 +12017 +12016 +12015 >0
⇒x=−2018
Vậy x=-2018 thỏa mãn
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
Câu1: tìm số nguyên x mà -35/6<x>-18/5
Câu2 : so sánh A=2015/2016+2016/2017 và B= 2015+2016/2016+2017
Câu3 : tìm số nguyên x biết rằng : 1/3+1/6+1/10...+2/x(x+1) =2007/2009
câu 1. tìm x nguyên để \(\frac{-35}{6}\)<x<\(\frac{-18}{5}\)
<=> -4,375<x<-3,6
mà x\(\in\)Z nên x={-4}
câu 2. A=\(\frac{2015}{2016}\)+\(\frac{2016}{2017}\)
B=\(\frac{2015+2016}{2016+2017}\)=\(\frac{2015}{2016+2017}\)+\(\frac{2016}{2016+2017}\)
Vì \(\frac{2015}{2016+2017}\)<\(\frac{2015}{2016}\); \(\frac{2016}{2016+2017}\)<\(\frac{2016}{2017}\)
Vậy B<A
cau3:
\(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{10}\)+.....+\(\frac{2}{x\left(x+1\right)}\)=\(\frac{2007}{2009}\)
2.(\(\frac{1}{6}\)+\(\frac{1}{12}\)+\(\frac{1}{20}\)+.....+\(\frac{1}{x\left(x+1\right)}\))=\(\frac{2007}{2009}\)
2.(\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+.....+\(\frac{1}{x\left(x+1\right)}\))=\(\frac{2007}{2009}\)
2.(\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{5}\)+.....+\(\frac{1}{x}\)-\(\frac{1}{x+1}\))=\(\frac{2007}{2009}\)
2.(\(\frac{1}{2}\)-\(\frac{1}{x+1}\))=\(\frac{2007}{2009}\)
\(\frac{1}{2}\)-\(\frac{1}{x+1}\)=\(\frac{2007}{4018}\)
\(\frac{1}{x+1}\)=\(\frac{1}{2}\)-\(\frac{2007}{4018}\)
\(\frac{1}{x+1}\)=\(\frac{1}{2009}\)
x+1=2009
x=2009-1
x=2008
Tìm x biết\(\frac{x-1}{2017}\)+\(\frac{x-2}{2016}\)+\(\frac{x-3}{2015}\)+....+\(\frac{x-2017}{1}\)=2017
Hình như đề sai dấu, mình sửa lại rồi!
\(\frac{x-1}{2017}+\frac{x-2}{2016}+\frac{x-3}{2015}+...+\frac{x-2017}{1}=2017\)
\(\Leftrightarrow\) \(\frac{x-1}{2017}-1+\frac{x-2}{2016}-1+\frac{x-3}{2015}-1+...+\frac{x-2017}{1}-1=0\)
\(\Leftrightarrow\) \(\frac{x-2018}{2017}+\frac{x-2018}{2016}+\frac{x-2018}{2015}+...+\frac{x-2018}{1}=0\)
\(\Leftrightarrow\) (x - 2018)\(\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+...+1\right)=0\)
\(\Leftrightarrow\) x - 2018 = 0
\(\Leftrightarrow\) x = 2018
Vậy S = {2018}
Chúc bn học tốt!!