Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tiểu long nữ
Xem chi tiết
Lê Quý Trung
27 tháng 5 2018 lúc 19:49

\(=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)+\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+\left(\sqrt{x}-10\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+2\sqrt{x}+x-2\sqrt{x}-\sqrt{x}+2+\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{2x-8}{x-4}\)

\(=\frac{2\left(x-4\right)}{x-4}\)

\(=2\)

Lương Tiến Năng
Xem chi tiết
Nguyễn Hưng Phát
21 tháng 7 2018 lúc 16:23

ĐKXĐ:\(\hept{\begin{cases}x-2>0\\y-1>0\\z-5>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>2\\y>1\\z>5\end{cases}}\)

pt\(\Leftrightarrow\frac{4}{\sqrt{x-2}}+\frac{1}{\sqrt{y-1}}+\frac{25}{\sqrt{z-5}}+\sqrt{x-2}+\sqrt{y-1}+\sqrt{z-5}=16\)

Áp dụng BĐT Cauchy:

\(\frac{4}{\sqrt{x-2}}+\sqrt{x-2}+\frac{1}{\sqrt{y-1}}+\sqrt{y-1}+\frac{25}{\sqrt{z-5}}+\sqrt{z-5}\)

\(\ge2\sqrt{\frac{4}{\sqrt{x-2}}.\sqrt{x-2}}+2\sqrt{\frac{1}{\sqrt{y-1}}.\sqrt{y-1}}+2\sqrt{\frac{25}{\sqrt{z-5}}.\sqrt{z-5}}\)

\(=2\sqrt{4}+2\sqrt{1}+2\sqrt{25}=2.2+2.1+2.5\)

\(=4+2+10=16\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2=4\\y-1=1\\z-5=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=2\\z=30\end{cases}}\)

ABC
Xem chi tiết
Thanh Tùng DZ
2 tháng 3 2020 lúc 21:03

mình làm nốt câu còn lại ok

b) ta thấy x = 0 không là nghiệm của phương trình

chia cả 2 vế cho x khác 0, ta được :

\(\left(x-\frac{1}{x}\right)+\sqrt[3]{x-\frac{1}{x}}=2\)

đặt \(t=\sqrt[3]{x-\frac{1}{x}}\)

Ta có : \(t^3+t-2=0\Leftrightarrow\left(t-1\right)\left(t^2+t+2\right)=0\Leftrightarrow t=1\)

Khi đó : \(\sqrt[3]{x-\frac{1}{x}}=1\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)

Vậy ...

Khách vãng lai đã xóa
Tran Le Khanh Linh
2 tháng 3 2020 lúc 20:50

a) Từ phương trình đã cho ta có: \(x\ge0\)

Rõ ràng x=0 không thỏa mãn phương trình đã cho nên x>0

Nhân với liên hợp của vế trái ta được:

\(\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}=\frac{x+2}{3}\)

Kết hợp với phương trình đã cho ta có:

\(\sqrt{2x^2+x+1}=\frac{5x+1}{3}\)

Giải phương trình này được nghiệm \(x=\frac{-19+3\sqrt{65}}{14}\)

Khách vãng lai đã xóa
Nuyễn Văn Tuấn Anh(Alex...
2 tháng 3 2020 lúc 20:55

a) \(\Leftrightarrow2x^2+x+1+x^2-x+1+2\sqrt{\left(2x^2+x+1\right)\left(x^2-x+1\right)}=9x^2\)

\(\Leftrightarrow2\sqrt{2x^4-x^3+2x^2+1}=6x^2-2\)

\(\Leftrightarrow2x^4-x^3+2x^2+1=9x^4-6x^2+1\)

\(\Leftrightarrow7x^4+x^3-8x^2=0\)

\(\Leftrightarrow7x^2+x-8=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-8}{7}\end{cases}}\) 

Khách vãng lai đã xóa
tran duc huy
Xem chi tiết
Nguyễn Thị Ngọc Thơ
4 tháng 12 2019 lúc 20:05

1.

ĐK: \(-1\le x\le4\)

Đặt \(\sqrt{x+1}+\sqrt{4-x}=t\left(t\ge0\right)\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{t^2-5}{2}\)

\(PT\Leftrightarrow t+\frac{t^2-5}{2}=5\Rightarrow t^2+2t-15=0\) \(\Rightarrow\left[{}\begin{matrix}t=3\\t=-5\left(l\right)\end{matrix}\right.\)

\(t=3\Rightarrow\sqrt{-x^2+3x+4}=2\) \(\Leftrightarrow-x^2+3x+4=4\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) (tm)

2.

ĐK:\(x\ge4\)

Đặt \(\sqrt{x+4}+\sqrt{x-4}=t\left(t\ge0\right)\)

\(\Rightarrow2\sqrt{x^2-16}=t^2-2x\)

\(PT\Leftrightarrow t=2x-12+t^2-2x\)

\(\Leftrightarrow t^2-t-12=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-3\left(l\right)\end{matrix}\right.\) Giải tiếp như trên.

Khách vãng lai đã xóa
nguyen thao
Xem chi tiết
武术涂上
Xem chi tiết
Nguyễn Thị Ngọc Thơ
30 tháng 12 2019 lúc 23:39

ĐK: \(x>0\)

\(PT\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)-2\left(x+\frac{1}{4x}\right)-4=0\)

Đặt: \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\left(t>0\right)\) \(\Rightarrow t^2=x+\frac{1}{4x}+1\)

\(PT\Leftrightarrow5t-2\left(t^2-1\right)-4=0\)

\(\Leftrightarrow2t^2-5t+2=0\) \(\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{1}{2}\end{matrix}\right.\) (tm)

\(t=2\Rightarrow x+\frac{1}{4x}-3=0\Rightarrow x^2-3x+\frac{1}{4}\) \(=0\Rightarrow x=\frac{3\pm2\sqrt{2}}{2}\) (tm)

\(t=\frac{1}{2}\Rightarrow x+\frac{1}{4x}+\frac{3}{4}=0\) \(\Rightarrow x^2+\frac{3}{4}x+\frac{1}{4}=0\) (vô no)

Vậy...

Khách vãng lai đã xóa
Nguyen Minh Hieu
Xem chi tiết
alibaba nguyễn
21 tháng 5 2017 lúc 10:09

\(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)

\(\Leftrightarrow\sqrt{x+\frac{1}{4}+2.\sqrt{x+\frac{1}{4}}.\frac{1}{2}+\frac{1}{4}}=2-x\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=2-x\)

\(\Leftrightarrow\sqrt{x+\frac{1}{4}}+\frac{1}{2}=2-x\)

\(\Leftrightarrow\sqrt{x+\frac{1}{4}}=\frac{3}{2}-x\)(\(x\le\frac{3}{4}\))

 \(\Leftrightarrow x^2-4x+2=0\)

\(\Leftrightarrow\hept{\begin{cases}2-\sqrt{2}\\2+\sqrt{2}\left(l\right)\end{cases}}\) 

Cao Thị Thùy Dương
21 tháng 5 2017 lúc 9:32

mình mới học lớp 5 ko biết làm 

Nguyen Minh Hieu
21 tháng 5 2017 lúc 10:23

tks alibaba

Nguyễn Quang Trung
Xem chi tiết
Trần Đức Thắng
10 tháng 3 2016 lúc 20:47

Nhân nên sau đó đặt \(\sqrt{x+4}=a;\sqrt{x-4}=b\)

pt<=> a+b = a^2 + b^2 + 2ab - 6 

  <=> (a+b)^2 - (a+b) - 6 = 0 

Ẩn a + b , dùng đenta giải >>> 

s2 Lắc Lư  s2
10 tháng 3 2016 lúc 20:33

đặt ẩn phụ ra

Nguyễn Quang Trung
10 tháng 3 2016 lúc 20:39

đặt sao h

Kiệt Nguyễn
Xem chi tiết
Cố Tử Thần
1 tháng 5 2019 lúc 9:17

trả lời

chỗ 1/căn bậc 4 hay can bậc 2

chỗ đề off mik là căn 2