giải pt
\(\sqrt{16-x^2}+x-\frac{4}{x}=4\sqrt{\frac{2}{x}-\frac{1}{x^2}}\)
giúp mik vs
Rút gọn biểu thức \(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{\sqrt{x}-10}{x-4}\) (x>=0, x khác 4)
giúp mik giải vs
\(=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)+\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+\left(\sqrt{x}-10\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}+x-2\sqrt{x}-\sqrt{x}+2+\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{2x-8}{x-4}\)
\(=\frac{2\left(x-4\right)}{x-4}\)
\(=2\)
a) Giải pt: \(\frac{4}{\sqrt{x-2}}+\frac{1}{\sqrt{y}-1}+\frac{25}{\sqrt{z-5}}=16-\sqrt{x-2}-\sqrt{y-1}-\sqrt{z-5}\)
ĐKXĐ:\(\hept{\begin{cases}x-2>0\\y-1>0\\z-5>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>2\\y>1\\z>5\end{cases}}\)
pt\(\Leftrightarrow\frac{4}{\sqrt{x-2}}+\frac{1}{\sqrt{y-1}}+\frac{25}{\sqrt{z-5}}+\sqrt{x-2}+\sqrt{y-1}+\sqrt{z-5}=16\)
Áp dụng BĐT Cauchy:
\(\frac{4}{\sqrt{x-2}}+\sqrt{x-2}+\frac{1}{\sqrt{y-1}}+\sqrt{y-1}+\frac{25}{\sqrt{z-5}}+\sqrt{z-5}\)
\(\ge2\sqrt{\frac{4}{\sqrt{x-2}}.\sqrt{x-2}}+2\sqrt{\frac{1}{\sqrt{y-1}}.\sqrt{y-1}}+2\sqrt{\frac{25}{\sqrt{z-5}}.\sqrt{z-5}}\)
\(=2\sqrt{4}+2\sqrt{1}+2\sqrt{25}=2.2+2.1+2.5\)
\(=4+2+10=16\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2=4\\y-1=1\\z-5=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=2\\z=30\end{cases}}\)
giải các pt sau
a) \(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\)
b) \(x^2+\sqrt[3]{x^4-x^2}=2x+1\)
c) \(2x+\frac{x-1}{x}=\sqrt{1-\frac{1}{x}}+3\sqrt{x-\frac{1}{x}}\)
mn giúp mk vs ạ
mình làm nốt câu còn lại ok
b) ta thấy x = 0 không là nghiệm của phương trình
chia cả 2 vế cho x khác 0, ta được :
\(\left(x-\frac{1}{x}\right)+\sqrt[3]{x-\frac{1}{x}}=2\)
đặt \(t=\sqrt[3]{x-\frac{1}{x}}\)
Ta có : \(t^3+t-2=0\Leftrightarrow\left(t-1\right)\left(t^2+t+2\right)=0\Leftrightarrow t=1\)
Khi đó : \(\sqrt[3]{x-\frac{1}{x}}=1\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)
Vậy ...
a) Từ phương trình đã cho ta có: \(x\ge0\)
Rõ ràng x=0 không thỏa mãn phương trình đã cho nên x>0
Nhân với liên hợp của vế trái ta được:
\(\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}=\frac{x+2}{3}\)
Kết hợp với phương trình đã cho ta có:
\(\sqrt{2x^2+x+1}=\frac{5x+1}{3}\)
Giải phương trình này được nghiệm \(x=\frac{-19+3\sqrt{65}}{14}\)
a) \(\Leftrightarrow2x^2+x+1+x^2-x+1+2\sqrt{\left(2x^2+x+1\right)\left(x^2-x+1\right)}=9x^2\)
\(\Leftrightarrow2\sqrt{2x^4-x^3+2x^2+1}=6x^2-2\)
\(\Leftrightarrow2x^4-x^3+2x^2+1=9x^4-6x^2+1\)
\(\Leftrightarrow7x^4+x^3-8x^2=0\)
\(\Leftrightarrow7x^2+x-8=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-8}{7}\end{cases}}\)
Giải pt sau :
1, \(\sqrt{x+1}+\sqrt{4-x}+\sqrt{\left(x+1\right)\left(4-x\right)}=5\)
2, \(\sqrt{x+4}+\sqrt{x-4}=2x-12+2\sqrt{x^2-16}\)
3, \(\sqrt{x+\sqrt{6x-9}}+\sqrt{x-\sqrt{6x-9}}=\sqrt{6}\)
4, \(\frac{4}{x+\sqrt{x^2+x}}-\frac{1}{x-\sqrt{x^2+x}}=\frac{3}{x}\)
5, \(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\)
1.
ĐK: \(-1\le x\le4\)
Đặt \(\sqrt{x+1}+\sqrt{4-x}=t\left(t\ge0\right)\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{t^2-5}{2}\)
\(PT\Leftrightarrow t+\frac{t^2-5}{2}=5\Rightarrow t^2+2t-15=0\) \(\Rightarrow\left[{}\begin{matrix}t=3\\t=-5\left(l\right)\end{matrix}\right.\)
\(t=3\Rightarrow\sqrt{-x^2+3x+4}=2\) \(\Leftrightarrow-x^2+3x+4=4\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) (tm)
2.
ĐK:\(x\ge4\)
Đặt \(\sqrt{x+4}+\sqrt{x-4}=t\left(t\ge0\right)\)
\(\Rightarrow2\sqrt{x^2-16}=t^2-2x\)
\(PT\Leftrightarrow t=2x-12+t^2-2x\)
\(\Leftrightarrow t^2-t-12=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-3\left(l\right)\end{matrix}\right.\) Giải tiếp như trên.
Mik đag cần gấp giải giúp vs
Cho biểu thức B=\((\frac{\sqrt{x}+1}{\sqrt{x}+2}-\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{5\sqrt{x}+2}{4-x}):\frac{3\sqrt{x-x}}{x+\sqrt{x}+4}\)
a) Rút gọn B
b) Tìm x để B=2
c)Tìm x để B nhận giá trị âm
Cho biểu thức P=\((\frac{x}{x\sqrt{x}-4\sqrt{x}}-\frac{6}{3\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}):(\frac{\sqrt{x}-2+10-x}{\sqrt{x}+2})\)
a) Rút gọn P
b)Tìm các giá trị nguyên của x để biểu thức Q=\((-\sqrt{x}-1)\)P nhận đc giá trị nguyên
\(5\sqrt{x}+\frac{5}{2\sqrt{x}}=2x+\frac{1}{2x}+4\)
gải pt này mik vs
ĐK: \(x>0\)
\(PT\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)-2\left(x+\frac{1}{4x}\right)-4=0\)
Đặt: \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\left(t>0\right)\) \(\Rightarrow t^2=x+\frac{1}{4x}+1\)
\(PT\Leftrightarrow5t-2\left(t^2-1\right)-4=0\)
\(\Leftrightarrow2t^2-5t+2=0\) \(\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{1}{2}\end{matrix}\right.\) (tm)
\(t=2\Rightarrow x+\frac{1}{4x}-3=0\Rightarrow x^2-3x+\frac{1}{4}\) \(=0\Rightarrow x=\frac{3\pm2\sqrt{2}}{2}\) (tm)
\(t=\frac{1}{2}\Rightarrow x+\frac{1}{4x}+\frac{3}{4}=0\) \(\Rightarrow x^2+\frac{3}{4}x+\frac{1}{4}=0\) (vô no)
Vậy...
Mọi người giúp em giải pt này với
\(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)
\(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)
\(\Leftrightarrow\sqrt{x+\frac{1}{4}+2.\sqrt{x+\frac{1}{4}}.\frac{1}{2}+\frac{1}{4}}=2-x\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=2-x\)
\(\Leftrightarrow\sqrt{x+\frac{1}{4}}+\frac{1}{2}=2-x\)
\(\Leftrightarrow\sqrt{x+\frac{1}{4}}=\frac{3}{2}-x\)(\(x\le\frac{3}{4}\))
\(\Leftrightarrow x^2-4x+2=0\)
\(\Leftrightarrow\hept{\begin{cases}2-\sqrt{2}\\2+\sqrt{2}\left(l\right)\end{cases}}\)
Giải pt: \(\frac{\sqrt{x+4}+\sqrt{x-4}}{2}=x+\sqrt{x^2-16}-6\)
Nhân nên sau đó đặt \(\sqrt{x+4}=a;\sqrt{x-4}=b\)
pt<=> a+b = a^2 + b^2 + 2ab - 6
<=> (a+b)^2 - (a+b) - 6 = 0
Ẩn a + b , dùng đenta giải >>>
Giải pt
\(\frac{1}{x}+\frac{1}{\sqrt[4]{2-x^4}}=2\left(x\inℝ\right)\)
Cứu vs
trả lời
chỗ 1/căn bậc 4 hay can bậc 2
chỗ đề off mik là căn 2