1, tìm stn n sao cho n+2 chia hết cho n-1
2, 2n+1 chia hết cho n+1
Tìm stn n sao cho
a) n + 3 chia hết cho n - 2
b)2n + 5 chia hết cho n + 1
c)2n + 1 chia hết cho 6 - n
d)4n + 3 chia hết cho 2n + 6
a) n+3 chia hết cho n-2
=>n-2+5 chia hết cho n-2
=> 5 chia hết cho n-2
U(5)=1;5
=>n=3;7
Ta có: n + 3 chia hết cho n - 2
<=> n - 2 + 5 chia hết n - 2
=> 5 chia hết n - 2
=> n - 2 thuộc Ư(5) = {-1;1;-5;5}
=> n = {1;3;-3;7}
b)\(\frac{2n+5}{n+1}=\frac{2\left(n+1\right)+3}{n+1}=\frac{2\left(n+1\right)}{n+1}+\frac{3}{n+1}=2+\frac{3}{n+1}\in Z\)
=>3 chia hết n+1
=>n+1 thuộc Ư(3)={1;3} (vì n thuộc N)
=>n thuộc {0;2}
c)\(\frac{4n+3}{2n+6}=\frac{2\left(2n+6\right)-9}{2n+6}=\frac{2\left(2n+6\right)}{2n+6}-\frac{9}{2n+6}=2-\frac{9}{2n+6}\in Z\)
=>9 chia hết 2n+6
=>2n+6 thuộc Ư(9)={1;3;9} (vì n thuộc N)
=>n thuộc rỗng
Tìm STN n sao cho:
a) (4n - 7) chia hết cho (n - 1)
b) (5n - 8) chia hết cho (4 - n)
c) (10 - 2n) chia hết cho (n - 2)
d) (n^2 + 3n + 6) chia hết cho (n + 3)
a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)
b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)
\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)
c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)
d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)
\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)
Tìm stn n sao cho :
a, (a^4-2n^3+2n^2-2n+1) chi hết cho (n^4-1)
b, (n^3-n^2+2n+7) chia hết cho (n^2+1)
Tìm số tự nhiên n sao cho:
a) 5 chia hết cho (n + 1);
b) (2n + 3) chia hết cho n
c) (2n + 16) chia hết cho (n + 1);
d) (5n + 12) chia hết cho ( n - 3)
Tìm STN n, sao cho:
a,5n+7 chia hết cho n
b,n+9 chia hết cho n+4
c,2n+1 chia hết cho n-3
a) Vì 5n + 7 chia hết cho n
\(\Rightarrow7⋮n\Rightarrow n\inƯ\left(7\right)\Rightarrow n\in\left\{\pm1;\pm7\right\}\)
Vậy \(n\in\left\{\pm1;\pm7\right\}\)
b) Vì n + 9 chia hết cho n +4
\(\Rightarrow\left(n+4\right)+5⋮n+4\)
\(\Rightarrow5⋮n+4\)
\(\Rightarrow n+4\inƯ\left(5\right)\)
\(\Rightarrow n+4\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{-3;-5;-1;-9\right\}\) \(\inℕ\)
Vậy \(n\in\left\{-3;-5;-1;-9\right\}\)
c, Vì 2n + 1 chia hết cho n - 3
\(\Rightarrow\left(2n-6+7\right)⋮\left(n-3\right)\)
\(\Rightarrow2\left(n-3\right)+7⋮n-3\)
\(2\left(n-3\right)⋮n-3\Rightarrow7⋮n-3\)
Phần còn lại lm như trên
tìm số nguyên n sao cho
a, n+12 chia hết cho n+7
b, n-6 chia hết cho n +4
c, 3n+2 chia hết cho n-1
d,n^2+2n-7 chia hết cho n-2
e, 4n+3 chia hết cho 2n-1
tìm STN n sao cho 2n+5 chia hết cho n+1
\(\frac{2n+5}{n+1}\in N\)
\(\frac{2n+5}{n+1}=\frac{2n+2+3}{n+1}=\frac{2\left(n+1\right)+3}{n+1}=2\frac{3}{n+1}\)Mà \(2\frac{3}{n+1}\in N\)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{1;3\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\)
2n + 5 cia hết cho n + 1
=> [(2n + 2) + 5 - 2] chia hết cho n + 1
=> [(2.n + 1.2)+3] chia hết cho n + 1
=> [2.(n+1)+3] chia hết cho n + 1
có n + 1 chia hết cho n + 1 => 2.(n+1) cũng chia hết cho n + 1
=> 3 chia hết cho n +1
=> n+1 thuộc ư(3)
=> n + 1 thuộc {-1;-3;1;3}
=> n thuộc {-1-1 ; -3-1 ; 1-1; 3-1}
=> n thuộc {-2;-4;0;2} mà n thuộc N
=> n thuộc {0;2}
vậy......
2n+5 \(⋮\) n+1 <=> 2(n+1)+3 \(⋮\) n+1
=> 3 \(⋮\) n+1 (vì 2(n+1) \(⋮\) n+1)
=> n+1 \(\in\) Ư(3) = {1; 3}
n+1 = 1 => n = 0
n+1 = 3 => n = 2
Vậy n \(\in\) {0; 2}
Tìm các STN n biết:
n+4 chia hết cho n-1
3n-1 chia hết cho n-2
-2n+8 chia hết cho n+1
n2 +2n -3 chia hết cho n+1
3n+1 chia hết cho 2n-6.4n+5 chia hết cho 3n
Các pn giải chi tiết giúp mk nhé!!!~~~~
n + 4 chia hết cho n - 1
=> ( n - 1 ) + 5 chia hết cho n - 1
Mà n - 1 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n -1 thuộc Ư(5) = { 1 ; 5 }
=> n thuộc { 2 ; 6 }
Thì cứ giải từng con1 ùi lik-e cho
n2 + 2n - 3 chia hết cho n + 1
=> n2 + n + n - 3 chia hết cho n + 1
=> n ( n + 1 ) + n - 3 chia hết cho n + 1
Mà : n ( n + 1 ) chia hết cho n + 1
=> n - 3 chia hết cho n + 1
=> ( n + 1 ) - 4 chia hết cho n + 1
Mà : n + 1 chia hết cho n + 1
=> 4 chia hết cho n + 1
=> n + 1 thuộc Ư(4) = { 1 ; 2 ; 4 }
=> n thuộc { 0 ; 1 ; 3 }
Tìm STN n sao cho 4n+3 chia hết cho 2n+1
\(4n+3⋮2n+1\Rightarrow2\left(2n+1\right)+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\Rightarrow2n+1=1\)
\(\Rightarrow n=0\)
Ta có: 4n+3 chia hết cho 2n+1 (1)
Mà: 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1(2)
Từ (1) và (2) => (4n+3)-(4n+2) chia hết cho 2n+1
=> 1 chia hết cho 2n+1
=> 2n+1 thuộc Ư(1)={1;-1}
2n+1= 1 hoặc 2n+1=-1
=> 2n=0
=> n=0
chuc ban hc tot:))))