cho tam giác ABC cân tại A,đường cao AH,M là trung điểm của AH.Kẻ HN vuông góc với CM.Tính BN biết AC=5cm,AN=3cm
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 3cm; BC = 5cm. a/ Tính AC, AH, HB, HC. b/ Tính các tỉ số lượng giác của góc B và tính góc C. c/ Vẽ HM vuông góc AB tại M; vẽ HN vuông góc AC tại N. Chứng minh: AM. AB = AN. AC.
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
Cho tam giác ABC vuông tại A;AB=3cm; AC=4cm đường cao AH.kẻ HE vuông góc (E thuộc AB),HF vuông góc với AV (F thuộc AC) a)Chứng minh EF=AH b)Tính diện tích tam giác ABC và độ dài đoạn thẳng AH c) Goih M,N theo thứ tự là trung điểm của HB,HC.Tứ giác MNFE là hình gì?Vì sao?
a: Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
=>EF=AH
b: \(S_{ABC}=\dfrac{1}{2}\cdot3\cdot4=2\cdot3=6\left(cm^2\right)\)
\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H. Gọi K là trung điểm AC, kẻ Ax vuông góc AH cắt HK tại D.
a) CM tứ giác AKHB to hình thang
b) CM tứ giác ADHB là hình bình hành
c) kẻ HN là đường cao tam giác AHB. Gọi I là trung điểm AN, lấy M đối xứng H qua B. CM: MN vuông góc với IH
a: ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
Xét ΔCAB có
H,K lần lượt là trung điểm của CB,CA
=>HK là đường trung bình của ΔCAB
=>HK//AB và \(HK=\dfrac{AB}{2}\)
Xét tứ giác AKHB có KH//AB
nên AKHB là hình thang
b: Ta có: AD\(\perp\)AH
BC\(\perp\)AH
Do đó: AD/BC
=>AD//BH
Xét tứ giác ADHB có
AD//HB
AB//HD
Do đó: ADHB là hình bình hành
Cho tam giác ABC cân tại A. Đường cao AH (H thuộc BC).
a) Chứng minh H là trung điểm của BC và góc BAH = góc HAC.
b) Kẻ HM vuông góc với AB tại M và HN vuông góc với AC tại N. Chứng minh tam giác AMN cân tại A.
c) Vẽ P sao cho H là trung điểm đoạn NP. Chứng minh AH, MN, DP đồng quy.
d) MP cắt BC tại K, NK cắt MH tại D. Chứng minh AH, MN, DP đồng quy.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC và góc BAH=góc CAH
b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>AM=AN
=>ΔAMN cân tại A
Cho tam giác ABC vuông tại A,đường cao AH.Kẻ HK vuông góc với AC tại K
a)CM:tam giác ABC đồng dạng tam giác HAC;tam giác AHB đồng dạng tam giác HKA
b)CM: AH^2=HK.AB
c)Gọi M là trung điểm của AB,đoạn CM cắt HK tại I.Cm:I là trung điểm của HK
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
Xét ΔAHB vuông tại H và ΔHKA vuông tại K có
góc HAB=góc KHA
=>ΔAHB đồng dạng với ΔHKA
b: ΔAHB đồng dạng với ΔHKA
=>AH/HK=AB/HA
=>AH^2=HK*AB
c: Xét ΔCAM có KI//AM
nên KI/AM=CI/CM
Xét ΔCMB có IH//MB
nên IH/MB=CI/CM
=>KI/AM=IH/MB
mà AM=MB
nên KI=IH
=>I là trung điểm của KH
Cho tam giác ABC vuông tại A đường cao AH đường phân giác AD vẽ HN vuông góc với AC cho biết AB = 21 cm,AC=28 cm.Tính AH BD DC
a) Theo hệ thức liên hệ giữa đường cao và hình chiếu , ta có : AH2 = BH . CH
=> CH = AH2/BH = \(\dfrac{162}{25}=10,24\)
BC = BH + CH = 25 + 10,24 = 35,24
- Theo hệ thức liên hệ giữa cạnh góc vuông và hình chéo , ta có :
AB2 = BH.BC
=> AB\(\sqrt{\left(BH.BC\right)}\)
= \(\sqrt{\left(25.35,24\right)}\)
= \(\sqrt{881=29,68}\)
AC2 = HC.BC
=> AC = \(\sqrt{\left(CH.BC\right)}\)
= \(\sqrt{\left(10,24.35,24\right)=}\sqrt{\left(360,9\right)=18,99}\)
Cho tam giác ABC vuông tại A, trung tuyến AM, đường cao AH. Qua H vẽ đường vuông góc với AC cắt AM tại N
a) Chứng minh AM vuông góc với BN
b) Biết CM = 5cm, MH=3cm. Tính AH,AB,AC
Cho tam giác ABC vuông tại A có đường cao AH. Vẽ HN vuông góc với AC tại N. Gọi M là giao điểm của BN và AH. Gọi I là giao điểm của HN và CM. Chứng minh IH = IN
Cho \(\Delta ABC\) cân tại A,đường cao AH.Kẻ HM vuông góc với AB tại M;HN vuông góc với AC tại N
a) CM:BH=CH
b) CM:\(\Delta AMN\) cân
c) Gọi P là giao điểm của MH với AC,Q là giao điểm của NH với AB;I là trung điểm của PQ.CM 3 điểm N;H;I thẳng hàng
giúp mình với mn ơi!!!
a) Xét ΔABH vuông tại H & ΔACH vuông tại H có:
- AB = AC (vì ΔABC cân tại A)
- AH là cạnh chung
Suy ra ΔABH = ΔACH (cạnh huyền - cạnh góc vuông)
Từ đó BH = CH (hai cạnh tương ứng)
b) Từ ΔABH = ΔACH (chứng minh trên) suy ra BM = CN (hai cạnh tương ứng)
Mà AB = AC (chứng minh trên)
Suy ra AM = AB - BM = AN = AC - CN
Trong ΔAMN có AM = AN (chứng minh trên) nên ΔAMN cân tại A
c) (Sửa đề: Chứng minh ba điểm A; H; I thẳng hàng)