Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Văn Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 10 2021 lúc 0:37

c: Xét ΔAHB vuông tại H có HM là đường cao 

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao 

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

Bạch Long Ngũ Sát
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 1 2023 lúc 20:34

a: Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

=>EF=AH

b: \(S_{ABC}=\dfrac{1}{2}\cdot3\cdot4=2\cdot3=6\left(cm^2\right)\)

\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

Dung Kieutri
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2023 lúc 23:06

a: ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

Xét ΔCAB có

H,K lần lượt là trung điểm của CB,CA

=>HK là đường trung bình của ΔCAB

=>HK//AB và \(HK=\dfrac{AB}{2}\)

Xét tứ giác AKHB có KH//AB

nên AKHB là hình thang

b: Ta có: AD\(\perp\)AH

BC\(\perp\)AH

Do đó: AD/BC

=>AD//BH

Xét tứ giác ADHB có

AD//HB

AB//HD

Do đó: ADHB là hình bình hành

 

nguyett anhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 2:09

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>HB=HC và góc BAH=góc CAH

b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

góc MAH=góc NAH

=>ΔAMH=ΔANH

=>AM=AN

=>ΔAMN cân tại A

Ánh Khuê
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 7 2023 lúc 22:09

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC
Xét ΔAHB vuông tại H và ΔHKA vuông tại K có

góc HAB=góc KHA

=>ΔAHB đồng dạng với ΔHKA

b: ΔAHB đồng dạng với ΔHKA

=>AH/HK=AB/HA

=>AH^2=HK*AB

c: Xét ΔCAM có KI//AM

nên KI/AM=CI/CM

Xét ΔCMB có IH//MB

nên IH/MB=CI/CM

=>KI/AM=IH/MB

mà AM=MB

nên KI=IH

=>I là trung điểm của KH

Đỗ Ling
Xem chi tiết
Vương Hương Giang
6 tháng 4 2022 lúc 13:16

a) Theo hệ thức liên hệ giữa đường cao và hình chiếu , ta có : AH2 = BH . CH

=> CH = AH2/BH = \(\dfrac{162}{25}=10,24\)

BC = BH + CH = 25 + 10,24 = 35,24

- Theo hệ thức liên hệ giữa cạnh góc vuông và hình chéo , ta có :

AB2 = BH.BC

=> AB\(\sqrt{\left(BH.BC\right)}\) 

\(\sqrt{\left(25.35,24\right)}\)

\(\sqrt{881=29,68}\)

AC2 = HC.BC

=> AC = \(\sqrt{\left(CH.BC\right)}\)

\(\sqrt{\left(10,24.35,24\right)=}\sqrt{\left(360,9\right)=18,99}\)

PINK HELLO KITTY
Xem chi tiết
Vuong Tran Hoang
Xem chi tiết
Trần Đình Hoàng Quân
Xem chi tiết
Ngô Minh Ánh
28 tháng 6 2023 lúc 16:37

không có biết luôn á

 

when the imposter is sus
30 tháng 6 2023 lúc 10:07

a) Xét ΔABH vuông tại H & ΔACH vuông tại H có:

- AB = AC (vì ΔABC cân tại A)

- AH là cạnh chung

Suy ra ΔABH = ΔACH (cạnh huyền - cạnh góc vuông)

Từ đó BH = CH (hai cạnh tương ứng)

b) Từ ΔABH = ΔACH (chứng minh trên) suy ra BM = CN (hai cạnh tương ứng)

Mà AB = AC (chứng minh trên)

Suy ra AM = AB - BM = AN = AC - CN

Trong ΔAMN có AM = AN (chứng minh trên) nên ΔAMN cân tại A

c) (Sửa đề: Chứng minh ba điểm A; H; I thẳng hàng)