Cho A=3/4+8/9+15/16+...+9999/10000
Cmr
a. A<99
b. A không phải là số nguyên
Help meee
cho biểu thức A=3/4+8/9+15/16+....+9999/10000 chứng minh A < 99
Cho biểu thức A=3/4+8/9+15/16+...+9999/10000.Chứng minh rằng A
cho biểu thức A=3/4+8/9+15/16+....+9999/10000 chứng minh A < 99
Lời giải:
$A=(1-\frac{1}{4})+(1-\frac{1}{9})+(1-\frac{1}{16})+....+(1-\frac{1}{10000})$
$=(1+1+...+1)-(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+....+\frac{1}{10000})$
$=99-(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+....+\frac{1}{10000})< 99$
\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
\(=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+\left(1-\frac{1}{4^2}\right)+...+\left(1-\frac{1}{100^2}\right)\)(99 cặp)
\(=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)
99 hạng tử 1 99 hạng tử
\(=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)< 99 (1)
Lại có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{100.100}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)
Khi đó A = \(99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99-1=98\)(2)
(Vì \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)(cmt)
Từ (1)(2) => 98 < A < 99 => A không là số tự nhiên
Cho A=3/4+8/9+15/16+...+9999/1000.
CMR: 98<A<99
A=3/4+8/9+15/16+...+9999/1000.
= 1 - 1/4 + 1 - 1/9 + 1 - 1/6 ... + 1 - 1/1000
= ( 1 + 1 + 1 + ... + 1 ) + ( - 1/4 - 1/6 - 1/9 - 1/1000 )
= 99 + (- 1/4 - 1/9 - 1/6 - ... - 1/1000 )
Vì 99 + ( - 1/4 - 1/9 = 1/6 - ... - 1/1000 )
=> A > 98
Vậy A > 98
cho biểu thúc A=\(\dfrac{3}{4}\)+\(\dfrac{8}{9}\)+\(\dfrac{15}{16}\)+....+\(\dfrac{9999}{10000}\) chứng minh A<99
Cho A=3/4+8/9+15/16+...+9999/10000.Chứng tỏ rằng A không là số tự nhiên
nhận xét: với n là số tự nhiên, ta có (n-1)(n+1)=n(n+1)-(n+1)=n2+n-n-1=n2-1
do đó: 1.3=22-1
2.4=32-1
........
99.101=1002-1
=> \(A=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{100^2-1}{100^2}\)
\(=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+...+\frac{100^2}{100^2}-\frac{1}{100^2}\)
\(=\left(\frac{2^2}{2^2}+\frac{3^2}{3^2}+...+\frac{100^2}{100^2}\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
\(=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
Ta có:
\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}
tính A=3/4*8/9*15/16*....*9999/10000
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{9999}{10000}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{99.101}{100.100}\)
\(=\frac{\left(1.2.3....99\right)\left(3.4.5....101\right)}{\left(2.3.4...100\right)\left(2.3.4...100\right)}\)
\(=\frac{1.101}{100.2}=\frac{101}{200}\)
Tính hợp lý:
a) 3/4 . 8/9 . 15/16 . ... . 9999/10000
Cho A = \(\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{9999}{10000}\). Chuwngs minh A > 48