Tìm n sao cho các số sau là số chính phương
a,n2 +2n+12
b,n2+n+6
Giúp mình với,mình đang cần gấp
Tìm n thuộc N để n2 -4n+7 là số chính phương
Mình đang cần gấp các bạn giúp mình nhé mai mình đi học rồi
Đặt \(A=n^2-4n+7\) .
1. Với n = 0 => A = 7 không là số chính phương (loại)
2. Với n = 1 => A = 4 là số chính phương (nhận)
3. Với n > 1 , ta xét khoảng sau : \(n^2-4n+4< n^2-4n+7< n^2\)
\(\Rightarrow\left(n-2\right)^2< A< n^2\)
Vì A là số tự nhiên nên \(A=\left(n-1\right)^2\Leftrightarrow n^2-4n+7=n^2-2n+1\Leftrightarrow2n=6\Leftrightarrow n=3\)
Thử lại, n = 3 => A = 4 là một số chính phương.
Vậy : n = 1 và n = 3 thoả mãn đề bài .
Tìm n thuộc N sao cho n2+2n+30 là số chính phương
Bài 1 chứng minh rằng các số sau ko phải là số chính phương
a)12^12+13^12+14^12
b)7^100+161
các bạn trình bày bài giải ra giúp mình nhé
Câu 1 :a. Tìm n để n2+ 2006 là một số chính phương
b. Cho n là số nguyên tố lớn hơn 3 . Hỏi n2 là 2006 là số nguyên tố hay hợp số .
Câu 2 : Tìm tất cả các số tự nhiên có 3 chữ số abc sao cho abc = n2 - 1 và cba = ( n-2 ).2
Bạn nào trả lời giúp mình đi
Tham khảo câu hỏi tương tự nhé bạn .
Tick tớ đc chứ
Cho A = 1 + 3 + 5 + ... + ( 2n - 1 ) ( n ϵ N )
CMR: A là số chính phương
Giải giúp mình với mình đang cần rất gấp!!
Số số hạng của A:
(2n - 1 - 1) : 2 + 1 = (2n - 2) : 2 + 1
= n - 1 + 1
= n
A = (2n - 1 + 1) . n : 2
= 2n . n : 2
= 2n² : 2
= n²
Vậy A là số chính phương (vì n ∈ ℕ)
A = 1 + 3 + 5 + ... + (2n - 1)
Dãy số trên là dãy số cách đều với khoảng cách là:
3 - 1 = 2
Số số hạng của dãy số trên là:
(2n - 1 - 1) : 2 + 1 = n
A = (2n - 1 + 1).n : 2
A = 2n.n : 2
A = n2
Vậy A là số chính phương ( đpcm vì A là bình phương của một số tự nhiên)
Tìm các số nguyên n sao cho phân số 2n+3/ 7 có giá trị là 1 số nguyên.
Các bạn giúp mình nha mình đang cần gấp lắm.
bạn có thể giải chi tiết ra được không
Tìm các số nguyên tố p,q và m,n nguyên dương sao cho p2m +q2n là số chính phương.
Giúp mình với! Mình cần gấp ạ!
đặt \(p^{2m}+q^{2m}=a^2\)
Xét p,q cùng lẻ thì \(p^{2m}\)chia 4 dư 1 ; \(q^{2m}\)chia 4 dư 1
\(\Rightarrow p^{2m}+q^{2m}\)chia 4 dư 2
\(\Rightarrow a^2\)chia 4 dư 2 ( vô lí vì SCP chia 4 ko thể dư 2 hoặc 3 )
\(\Rightarrow\)ít nhất 1 trong 2 số p,q có 1 số bằng 2
giả sử p = 2
\(\Rightarrow4^m=a^2-q^{2n}=\left(a-q^n\right)\left(a+q^n\right)\)
\(\Rightarrow\hept{\begin{cases}a-q^n=4^x\\a+q^n=4^y\end{cases}\Rightarrow2.q^n=4^y-4^x⋮4}\)
\(\Rightarrow q^n⋮2\)
\(\Rightarrow q⋮2\)
\(\Rightarrow q=2\)
Thay p = q = 2 vào, ta được :
\(4^m+4^n=a^2\)
giả sử \(m\ge n\)
Đặt \(m=n+z\)
Ta có : \(4^{n+z}+4^n=4^n\left(4^z+1\right)=a^2\)
vì \(4^n\)là số chính phương nên \(4^z+1\)là số chính phương
Dễ thấy \(4^z+1=\left(2^z\right)^2+1\)không là số chính phương nên suy ra phương trình vô nghiệm
Đáp số nè: m=2, n=1, p=2, q=3 và các hoán vị.
Nếu ai cần thì cứ nhắn tin vs mik nha.
Đặt \(p^{2m}+q^{2n}=a^2\)\(\left(a\in Z\right)\)(1)
Nếu p,q lẻ suy ra \(p^{2m}\equiv q^{2n}\equiv1\)(mod 4)
\(\Rightarrow a^2\equiv2\)(mod 4), vô lý.
Suy ra trong p,q có 1 số = 2
Không mất tính tổng quát, giả sử p=2
\(\left(1\right)\Leftrightarrow2^{2m}+q^{2n}=a^2\)(2)
Nếu q khác 3 \(\Rightarrow\)q không chia hết cho 3\(\Rightarrow\)\(q^2\equiv1\)(mod 3)\(\Rightarrow\)\(q^{2n}\equiv1\)(mod 3)
Mà \(2^{2m}=4^m\equiv1^m\equiv1\)(mod 3)
Suy ra \(2^{2m}+q^{2n}\equiv2\)(mod 3)\(\Rightarrow\)vô lý.
Do đó q=3.
(2) trở thành \(2^{2m}+3^{2n}=a^2\)\(\Leftrightarrow\)\(3^{2n}=\left(a-2^m\right)\left(a+2^m\right)\)
\(\Rightarrow\)\(a-2^m\)và \(a+2^m\)là lũy thừa của 3.
Mà 2 số trên không cùng chia hết cho 3 (vì hiệu của chúng không chia hết cho 3)
\(\Rightarrow\)Có 1 số không chia hết cho 3\(\Rightarrow\)Có 1 số bằng 1 mà \(a-2^m< a+2^m\)\(\Rightarrow\hept{\begin{cases}a-2^m=1\\a+2^m=3^{2n}\end{cases}}\Rightarrow2\cdot2^m=3^{2n}-1\Rightarrow2^{m+1}=\left(3^n-1\right)\left(3^n+1\right)\)
\(\Rightarrow\)\(3^n-1\)và \(3^n+1\)đều là lũy thừa của 2.
Mà 2 số này không cùng chia hết cho 4 (do hiệu của chúng = 2 không chia hết cho 4).
\(\Rightarrow\)Có 1 số không chia hết cho 4.
Mà 2 số cùng tính chẵn lẻ\(\Rightarrow\)2 số cùng chẵn\(\Rightarrow\)Có 1 số = 2.
\(\Rightarrow\hept{\begin{cases}3^n-1=2\\3^n+1=2m\end{cases}}\)(do \(3^n-1< 3^n+1\))\(\Rightarrow\hept{\begin{cases}n=1\\m=2\end{cases}\Rightarrow\hept{\begin{cases}p=2\\q=3\end{cases}.}}\)
P/S: Bài dài viết lại mỏi quá.
CMR nếu n là số tự nhiên sao cho n+1 và n2+1 đều là các số chính phương thì n là bội của số 24
Giải cụ thể, chính xác cho mình nhé! ^^
Vì 2n+1 là số chính phương lẻ nên
2n+1≡1(mod8)⇒2n⋮8⇒n⋮42n+1≡1(mod8)⇒2n⋮8⇒n⋮4
Do đó n+1 cũng là số lẻ, suy ra
n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8
Lại có
(n+1)+(2n+1)=3n+2(n+1)+(2n+1)=3n+2
Ta thấy
3n+2≡2(mod3)3n+2≡2(mod3)
Suy ra
(n+1)+(2n+1)≡2(mod3)(n+1)+(2n+1)≡2(mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ nên
n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)
Do đó
n⋮3n⋮3
Vậy ta có đpcm.
Số tự nhiên n sao cho n2 + 404 là số chính phương
Các bạn giúp mình giải cụ thể nhé!