Tìm nghiệm của đa thức:
f(x) = |x| - 1
g(x) = x.(x+2) + 10
Giúp mk với
Bài 1: tìm x biết:
a)(x-8 ).( x3+8)=0
b)( 4x-3)-( x+5)=3.(10-x )
bài 2: cho hai đa thức sau:
f( x)=( x-1).(x+2 )
g(x)=x3+ax2+bx+2
Xác định a và b biết nghiệm của đa thức f(x)cũng là nghiệm của đa thức g(x)
Bài 1.
a.\(\left(x-8\right)\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b.\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
\(\Leftrightarrow4x-3-x-5=30-3x\)
\(\Leftrightarrow4x-x+3x=30+5+3\)
\(\Leftrightarrow6x=38\)
\(\Leftrightarrow x=\dfrac{19}{3}\)
Bài 1:
a. $(x-8)(x^3+8)=0$
$\Rightarrow x-8=0$ hoặc $x^3+8=0$
$\Rightarrow x=8$ hoặc $x^3=-8=(-2)^3$
$\Rightarrow x=8$ hoặc $x=-2$
b.
$(4x-3)-(x+5)=3(10-x)$
$4x-3-x-5=30-3x$
$3x-8=30-3x$
$6x=38$
$x=\frac{19}{3}$
Bài 2:
$f(x)=(x-1)(x+2)=0$
$\Leftrightarrow x-1=0$ hoặc $x+2=0$
$\Leftrightarrow x=1$ hoặc $x=-2$
Vậy $g(x)$ cũng có nghiệm $x=1$ và $x=-2$
Tức là:
$g(1)=g(-2)=0$
$\Rightarrow 1+a+b+2=-8+4a-2b+2=0$
$\Rightarrow a=0; b=-3$
Cho đa thức f(x)=3x^4-2x^2+x+5
g(x)=x^3-x+3x^4+5-x^3
a) sắp xếp theo luỹ thừa giảm dần của biến
b) tính f(x)+g(x) , f(x)-g(x)
c) tìm nghiệm của f(x)-g(x)
Giúp mk phần c
Cho đa thức f(x)=x2+mx+z
a, xác định m để f(x) nhận(-2) làm nghiệm
b, tìm tập hợp các nghiệm của f(x) ứng với giá trị vừa tìm được của m
a) 4-2m +2 = 0
m = 3
b) thay m =2 vao ta co;
x2 + 2x +2 = 0 ta tim dc tap nghiem tu giai nhe ng dep
a) tìm giá trị lớn nhất của biểu thức: A=1/x^2-4x+7
b) chứng tỏ đa thức f(x)=x^2-4x+7vô nghiệm
Giúp mình nha. Đag cần gấp
\(a)\) Ta có :
\(A=\frac{1}{x^2-4x+7}\)
\(A=\frac{1}{\left(x^2-4x+4\right)+3}\)
\(A=\frac{1}{\left(x-2\right)^2+3}\)
Lại có :
\(\left(x-2\right)^2\ge0\)
\(\Rightarrow\)\(\left(x-2\right)^2+3\ge3\)
\(\Rightarrow\)\(A=\frac{1}{\left(x-2\right)^2+3}\le\frac{1}{3}\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-2\right)^2+3=3\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=3-3\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(x-2=0\)
\(\Leftrightarrow\)\(x=2\)
Vậy GTLN của \(A\) là \(\frac{1}{3}\) khi 2\(x=2\)
Chúc bạn học tốt ~
\(b)\) Ta có :
\(f\left(x\right)=x^2-4x+7\)
\(f\left(x\right)=\left(x^2-4x+4\right)+3\)
\(f\left(x\right)=\left(x-2\right)^2+3\ge3>0\)
Vậy đa thức \(f\left(x\right)\) vô nghiệm
Chúc bạn học tốt ~
cho 2 đa thức : f(x)=(x-1).(x+2) và g(x)=x^3 +a.x^2+b.x+2
Xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
Cho hai đa thứ sau:
f(x)= (x-1)(x+2)
g(x)=x3+ax3+bx+2
Xách định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
Đặt f(x)=0
=>(x-1)(x+2)=0
=>x=1 hoặc x=-2
Vì nghiệm của f(x) cũng là nghiệm của g(x) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}1^3+a\cdot1^3+b\cdot1+2=0\\\left(-2\right)^3+a\cdot\left(-2\right)^3+b\cdot\left(-2\right)+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-3\\-8a-2b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+2b=-6\\-8a-2b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-3\end{matrix}\right.\)
Tìm nghiệm của mỗi đa thức sau :
a) f(x) = x^3 - x^2 + x -1
b) g(x) = 11x^3 + 5x^2 + 4x + 10
c) h(x) = -17x^3 + 8x^2 - 3x +12
a) Thay đa thức này bằng 0, ta được:
f(x) = x^3 - x^2 + x - 1 = 0
=> f(x) = x . x2 - x . x + x - 1 = 0
=> f(x) = x. (x2 - x + x) = 0 + 1 = 1
=> f(x) = x . x2 = 1
=> x = 1 và x2 = 1
=> x = 1
Vậy nghiệm của đa thức là x = 1
tìm a , biết rằng đa thức f(x) = ax2 - ax + 2 có một nghiệm x = 2
giúp mình với
xét f(2) = a2^2 - 2a + 2 = 0
=> 4a - 2a + 2 = 0
=> 2(2a - 1 + 1) = 0
=> 2a = 0
=> a = 0
tìm nghiệm của đa thức f(x)=x^3-2x^2-x+2
f(x) = 0 => x3 - 2x2 - x + 2 = 0
=> x2. (x - 2) - (x - 2) = 0
=> (x2 - 1).(x - 2) = 0 => x2 - 1 = 0 hoặc x - 2 = 0
+) x2 - 1 = 0 => x = 1 hoặc x = -1
+) x - 2 = 0 => x = 2
Vậy đa thức có 3 nghiệm là: -1;1;2