Chứng minh rằng với mọi a,b > 0 thì \(\frac{a^2}{b^2}+\frac{b^2}{a^2}\)≥\(\frac{a}{b}+\frac{b}{a}\)
Chứng minh rằng, với mọi a,b,c>0 ta có:
\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\ge\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
Chứng minh rằng với mọi bộ ba số khác 0 tùy ý \(a,b,c\) luôn có \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\).
Chứng minh rằng với \(a;b;c>0\)thì
\(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
tau lam theo cach nay hoi dai nhung van dung
xet:a2/b2+c2-a/b+c=ab(a-b)+ac(a-c)/(b2+c2)(b+c)(1)
tg tu:b2/c2+a2-b/c+a=bc(b-c)+ab(b-a)/(a2+c2)(c+a)(2)
c2/a2+b2-c/a+b=ac(c-a)+cb(c-b)(3)
lay(1)+(2)+(3) roi dat thua so chung ab(a-b);ac(c-a);bc(b-c) ra roi gia su a=>b=>c>0 suy ra bieu thuc trong ngoac ko am =>dpcm
Chứng minh rằng với mọi a, b, c > 0 thì:
\(a+b+c+2=abc\Leftrightarrow\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1\)
Bạn ơi mình nói ngắn gọn thôi
Quy đồng hai vế với (a+1)(b+1(c+1) phá ngoặc đơn là tìm được đáp án
Chứng minh rằng nếu \(\frac{a}{b}=\frac{b}{c}\)thì \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{b}\)với b,c khác 0
\(\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a}{b}.\frac{b}{c}=\frac{a}{b}.\frac{a}{b}=\frac{b}{c}.\frac{b}{c}\Rightarrow\frac{a}{c}=\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)
\(\Leftrightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}=\frac{a^2+b^2}{b^2+c^2}\)
Chứng minh rằng với mọi số thực a,b thì\(\frac{\left|a\right|}{2+\left|a\right|}+\frac{\left|b\right|}{2+\left|b\right|}\ge\frac{\left|a+b\right|}{2+\left|a+b\right|}\)
Bài 1 :
Cho a, b, c là 3 cạnh của một tam giác. Chứng minh rằng :
\(\frac{ab}{a+b-c}+\frac{bc}{b+c-a}+\frac{ac}{a+c-b}\ge a+b+c\)
Bài 2 :
Cho a, b, c khác 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Rút gọn : \(Q=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
Bài 3 :
Chứng minh rằng với mọi a, b, c khác 0 ta luôn có :
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
"Chấm" nhẹ hóng cao nhân ạ :)
P/s: mong các bác giải theo cách lớp 8 ạ :) Tặng 5SP / 1 câu nhé ;)
Câu 3: Tham khảo đây nhá: Câu hỏi của Trương Thanh Nhân, t làm r,giờ lười đánh lại.
tth, bài 3 làm thế chắc chết cauchy là ra thôi
chứng minh rằng nếu: \(\frac{a}{b}=\frac{b}{c}\)thì \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\) ( với b,c khác 0)
Ta có : \(\frac{a}{b}=\frac{b}{c}\)
\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{b}{c}\right)^2=\frac{ab}{bc}\)(Áp dụng tính chất a = b => a2 = b2 = ab)
\(\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{ab}{bc}\)
\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)(Trừ khử b trên tử và dưới mẫu còn a/c)
Chứng minh rằng nếu: \(\frac{a}{b}=\frac{b}{c}\)thì \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)(Với b,c khác 0)
\(\frac{a}{b}=\frac{b}{c}\)\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{b}{c}\right)^2=\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)
mà \(\left(\frac{a}{b}\right)^2=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\)
\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)