Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Nguyễn Linh Chi
Xem chi tiết
Nguyễn Thanh Hằng
25 tháng 10 2018 lúc 19:43

\(A=1+2+2^2+.....+2^{2018}\)

\(\Leftrightarrow2A=2+2^2+....+2^{2018}+2^{2019}\)

\(\Leftrightarrow2A-A=\left(2+2^2+....+2^{2019}\right)-\left(1+2+2^2+....+2^{2018}\right)\)

\(\Leftrightarrow A=2^{2019}-1< 2^{2019}\)

Vậy \(A< 2^{2019}\)

bdquang
Xem chi tiết

bạn viết lại đề đc ko bạn:>,ko hỉu đề

Khách vãng lai đã xóa
Lưu Nguyễn Hà An
23 tháng 2 2022 lúc 9:22

????????????????????????????????????????????????????????????????????????????????????????????????????????????

Cộng à bn

Khách vãng lai đã xóa
trần ngọc tường vy
Xem chi tiết
Minh anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 1 2023 lúc 0:40

2/3A=2/3-(2/3)^2+...+(2/3)^2019-(2/3)^2020

=>5/3A=1-(2/3)^2020

=>A=(3^2020-2^2020)/3^2020:5/3=\(\dfrac{3^{2020}-2^{2020}}{3^{2020}}\cdot\dfrac{3}{5}=\dfrac{3^{2020}-2^{2020}}{5\cdot3^{2019}}\) ko là số nguyên

Xem chi tiết
Ahwi
15 tháng 12 2018 lúc 20:43

Ta có : \(A=2^0+2^1+2^2+...+2^{2018}\)

\(\Rightarrow2A=2^1+2^2+2^3+...+2^{2019}\)

\(\Rightarrow2A-A=2^{2019}-2^0\)

\(\Rightarrow A=2^{2019}-1\)

\(\Rightarrow A=B\)

Tham khảo nak ~

Pham Thi Lam
Xem chi tiết
Pham Van Hung
9 tháng 10 2018 lúc 11:59

\(S=2^{2019}-2^{2018}-2^{2017}-...-2^2-2-1\)

   \(=2^{2019}-\left(1+2+2^2+...+2^{2017}+2^{2018}\right)\) (1)

Đặt \(Q=1+2+2^2+...+2^{2017}+2^{2018}\)

\(2Q=2+2^2+2^3+...+2^{2018}+2^{2019}\)

\(2Q-Q=2^{2019}-1\)

\(Q=2^{2019}-1\)(2) 

Từ (1) và (2), ta được:

\(S=2^{2019}-\left(2^{2019}-1\right)=1\)

     

Rainbow shines
Xem chi tiết
KWS
16 tháng 9 2018 lúc 11:32

\(3^{202}:3^{199}-4^{301}.4^{199}\)

\(=3^{202-199}-4^{301+199}\)

\(=3^3-4^{500}\)

\(=9-4^{500}\)

Vũ Ánh Nguyệt
Xem chi tiết
Võ Thành Tài
Xem chi tiết
I don
26 tháng 9 2018 lúc 17:37

S = 1-3 + 32 - 33 + ..+ 32018 - 32019

=> 3S = 3 - 32 + 33 - 34 +...+ 32019 - 32020

=> 3S + S = 1 - 32020

4S = 1 - 32020

\(S=\frac{1-3^{2020}}{4}\)

Vũ Hải Lâm
26 tháng 9 2018 lúc 17:37

bài này phải là 1 + đó bạn