cho B = .\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+.....+\frac{1}{19}\) Hay chung to B< 1
Cho B=\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}\)Hay chung to rang B>1
cho \(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}\)
chung to rang B >1
Ta có: 1/4+1/5+...+1/10>1/10.7=7/10
1/11+1/12+...+1/19>1/20.9=9/20
Kết hợp lại ta có B= 1/4+1/5+1/6+...+1/19>7/10+9/20=23/20>1.Vậy B>1
ta co 1/4+1/5+......+1/10>1/10.7=7/10
1/11+1/12+.....1/19>1/20.9=9/20
kết hợp lại ta có mB=1/4+1/5+1/6+......1/19>7/10+9/20=23/20>1 vậy B>1
ta có:
1/4>1/10
1/5>1/10
1/6>1/10
1/7>1/10
1/8>1/10
1/9>1/10
=>1/4 +1/5+1/6+1/7+1/8+1/9>1/10*6
=>1/4+1/5+1/6+1/7+1/8+1/9+1/10>1/10*7
=>1/4+1/5+1/6+...+1/19>1/10*7+1/11+1/12+...+1/19
=>1/4+1/5+1/6+...+1/19>7/10+1/11+1/12+...+1/19
mà ta thấy:
1/11>1/20
1/12>1/20
1/13>1/20
1/14>1/20
1/15>1/20
...
1/19>1/20
=>1/11+1/12+1/13+...+1/19>1/20*9
=>1/4+1/5+1/6+...+1/19>1/10*7+1/20*9
=>B>7/10+9/20
=>B>23/20=1.15>1
=>B>1(dpcm)
Bài 5: Cho B = \(\frac{1}{4} +\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}\). Hãy chứng tỏ B > 1.
Cho B= \(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}\). Chứng minh B>1
Ta có :
\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+..............+\frac{1}{19}\)
\(B=\frac{1}{4}+\left(\frac{1}{5}+\frac{1}{6}+.....+\frac{1}{9}\right)+\left(\frac{1}{10}+\frac{1}{11}+.........+\frac{1}{19}\right)\)
Ta thấy :
\(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}>\frac{1}{9}+\frac{1}{9}+...+\frac{1}{9}=\frac{1}{9}.5=\frac{5}{9}>\frac{1}{2}\)
\(\frac{1}{10}+\frac{1}{11}+....+\frac{1}{19}>\frac{1}{19}+\frac{1}{19}+...+\frac{1}{19}=\frac{1}{19}.5>\frac{10}{19}>\frac{1}{2}\)
\(\Rightarrow B>\frac{1}{4}+\frac{1}{2}+\frac{1}{2}>1\)
ta có
1/4+1/5+....+1/10>1/10,7=7/10
1/11+1/12+.....+1/19>1/20,9=9/20
kết hợp lại ta có b=1/4+1/5+1/6+......+1/19>7/10+9/20=23/20>1
vậy b>1
cho B =\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}\),hãy chứng minh B>1
cho B = \(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+.....+\frac{1}{19}.\)
- Hãy chứng tỏ rằng B > 1
\(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{19}=\frac{1}{4}+\left(\frac{1}{5}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+...+\frac{1}{19}\right)\) > \(\frac{1}{4}+\left(\frac{1}{9}+\frac{1}{9}+...+\frac{1}{9}\right)+\left(\frac{1}{19}+...+\frac{1}{19}\right)\)> \(\frac{1}{4}+\frac{5}{9}+\frac{10}{19}>\frac{1}{4}+\frac{1}{2}+\frac{1}{2}=1\)
Vậy \(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{19}>1\)
Cho \(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}\) .Chứng minh rằng B>1
B = 1/4 + 1/5 + 1/6 + ... + 1/19 > 1
B = 1/4+﴾1/5+1/6+...+1/9﴿+﴾1/10+1/11+...+1/19﴿
Vì 1/5+1/6+...+1/9 > 1/9+1/9+...+1/9 nên 1/5+1/6+...+1/9 > 5/9 >1/2
Vì 1/10+1/11+...+1/19 > 1/19+1/19+...+1/19 nên 1/10+1/11+...+1/19 > 10/19 >1/2
Suy ra: B > 1/4+1/2+1/2 > 1
cho \(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}\).Chứng minh rằng \(B>1\)
Bạn xem lời giải của mình nhé:
Giải:
Ta tách B làm 2 vế, mỗi vế có 8 số hạng:
+) \(A=\frac{1}{4}+\frac{1}{5}+...+\frac{1}{11}\)
+) \(C=\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}\)
Xét A:
1/4 > 1/12
1/5 > 1/12
...
1/11 > 1/12
=> \(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{11}< \frac{1}{12}+\frac{1}{12}+...+\frac{1}{12}\) (8 số 1/12) => \(A< \frac{8}{12}\Rightarrow A< \frac{3}{4}\)(1)
Xét C:
1/12 > 1/20
1/13 > 1/20
...
1/19 > 1/20
=> \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\) (8 số hạng) => \(C>\frac{8}{20}\Rightarrow C>\frac{2}{5}\)(2)
Từ (1) và (2) => A + C > \(\frac{3}{4}+\frac{2}{5}\Rightarrow B>1\frac{3}{20}>1\)
Vậy B>1 (đpcm)
Chúc bạn học tốt!
\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}\)
\(B=\frac{1}{4}+\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}\right)\)
Vì \(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}>\frac{1}{9}+\frac{1}{9}+...+\frac{1}{9}\) nên \(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}>\frac{5}{9}>\frac{1}{2}\)
Vì \(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}>\frac{1}{19}+\frac{1}{19}+...+\frac{1}{19}\) nên \(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}>\frac{10}{19}>\frac{1}{2}\)
\(=>\) \(B>\frac{1}{4}+\frac{1}{2}+\frac{1}{2}>1\)
Vậy \(B< 1\)
Cho B=\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}\)
Hãy chứng tỏ rằng B>1
\(B=\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{11}\right)+\left(\frac{1}{12}+...+\frac{1}{19}\right)>\left(\frac{1}{12}+\frac{1}{12}+...+\frac{1}{12}\right)+\left(\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)\)=> \(B>\frac{8}{12}+\frac{8}{20}=\frac{2}{3}+\frac{2}{5}=\frac{16}{15}>\frac{15}{15}=1\)
=> ĐPCM
mình có bài làm giống cô Trần Thị Loan
tk mình nhé