Bạn xem lời giải của mình nhé:
Giải:
Ta tách B làm 2 vế, mỗi vế có 8 số hạng:
+) \(A=\frac{1}{4}+\frac{1}{5}+...+\frac{1}{11}\)
+) \(C=\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}\)
Xét A:
1/4 > 1/12
1/5 > 1/12
...
1/11 > 1/12
=> \(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{11}< \frac{1}{12}+\frac{1}{12}+...+\frac{1}{12}\) (8 số 1/12) => \(A< \frac{8}{12}\Rightarrow A< \frac{3}{4}\)(1)
Xét C:
1/12 > 1/20
1/13 > 1/20
...
1/19 > 1/20
=> \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\) (8 số hạng) => \(C>\frac{8}{20}\Rightarrow C>\frac{2}{5}\)(2)
Từ (1) và (2) => A + C > \(\frac{3}{4}+\frac{2}{5}\Rightarrow B>1\frac{3}{20}>1\)
Vậy B>1 (đpcm)
Chúc bạn học tốt!
\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}\)
\(B=\frac{1}{4}+\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}\right)\)
Vì \(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}>\frac{1}{9}+\frac{1}{9}+...+\frac{1}{9}\) nên \(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}>\frac{5}{9}>\frac{1}{2}\)
Vì \(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}>\frac{1}{19}+\frac{1}{19}+...+\frac{1}{19}\) nên \(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}>\frac{10}{19}>\frac{1}{2}\)
\(=>\) \(B>\frac{1}{4}+\frac{1}{2}+\frac{1}{2}>1\)
Vậy \(B< 1\)