Ôn tập toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
quynh do

a/ Chứng minh phân số \(\frac{12n+1}{30n+2}\) tối giản

b/ Chứng minh \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

Trịnh Thị Thúy Vân
4 tháng 8 2016 lúc 21:22

a) Gọi ƯCLN(12n+1;30n+2) = d

\(\Rightarrow\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\)

\(\Rightarrow\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\)

\(\Rightarrow\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}\)

=> ( 60n + 5 ) - ( 60n + 4 ) \(⋮\) d

=> 1 \(⋮\) d

=> d = 1

Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản

b) Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)

                \(\frac{1}{3^2}< \frac{1}{2.3}\)

                 .........

                  \(\frac{1}{100^2}< \frac{1}{99.100}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\) 

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\) ( đpcm )

 


Các câu hỏi tương tự
Kirigaya Kazuto
Xem chi tiết
Cô Bé Yêu Đời
Xem chi tiết
Kirigaya Kazuto
Xem chi tiết
Chúng Ta Không Thược Về...
Xem chi tiết
Nguyễn Lê Minh Hiền
Xem chi tiết
đỗ thị kiều trinh
Xem chi tiết
Trần Hương Giang
Xem chi tiết
Miko
Xem chi tiết
Linh nguyen phan khanh
Xem chi tiết