Cho a> 10, b >100, c >1000. Tìm MIn
P=\(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1.Cho x\(\ge\)1 tìm Min P \(=3x+\frac{1}{2x}\)
2.Cho a\(\ge\)10;b\(\ge\)100;c\(\ge\)1000 tìm Min P \(=a+\frac{1}{a}+b+\frac{1}{b}+c+\frac{1}{c}\)
3. Cho a,b>0 CMR : \(\frac{a}{b}+\frac{b}{a}+\frac{8ab}{\left(a+b\right)^2}\ge4\)
1.
\(P=\frac{x}{2}+\frac{1}{2x}+\frac{5x}{2}\ge2\sqrt{\frac{x}{4x}}+\frac{5}{2}.1=\frac{7}{2}\)
Dấu "=" xảy ra khi \(x=1\)
2.
\(P=\frac{a}{100}+\frac{1}{a}+\frac{b}{10000}+\frac{1}{b}+\frac{c}{1000^2}+\frac{1}{c}+\frac{99}{100}a+\frac{9999}{10000}b+\frac{999999}{1000000}c\)
\(P\ge2\sqrt{\frac{a}{100a}}+2\sqrt{\frac{b}{10000b}}+2\sqrt{\frac{c}{1000000c}}+\frac{99}{100}.10+\frac{9999}{10000}.100+\frac{999999}{1000000}.1000=...\)
Bạn tự bấm máy tính
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=10\\b=100\\c=1000\end{matrix}\right.\)
3.
\(VT=\frac{a^2+b^2}{ab}+\frac{8ab}{\left(a+b\right)^2}\ge\frac{\left(a+b\right)^2}{2ab}+\frac{8ab}{\left(a+b\right)^2}\ge2\sqrt{\frac{8ab\left(a+b\right)^2}{2ab\left(a+b\right)^2}}=4\)
Dấu "=" xảy ra khi \(a=b\)
cho a+b+c=1. Tìm min \(a+\frac{1}{a}+b+\frac{1}{b}+c+\frac{1}{c}\)
Theo AM-GM có :
\(9a+\frac{1}{a}\ge2\sqrt{9a.\frac{1}{a}}=6\)
\(9b+\frac{1}{b}\ge2\sqrt{9b.\frac{1}{b}}=6\)
\(9c+\frac{1}{c}\ge2\sqrt{9c.\frac{1}{c}}=6\)
Cộng vế theo vế :
\(9\left(a+b+c\right)+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge18\)
\(8\left(a+b+c\right)+\left(a+\frac{1}{a}+b+\frac{1}{b}+c+\frac{1}{c}\right)\ge18\)
\(\left(a+\frac{1}{a}+b+\frac{1}{b}+c+\frac{1}{c}\right)\ge10\)
Vậy \(Min=10\)
\(\Leftrightarrow a=b=c=\frac{1}{3}\)
Cho a,b,c > 0 thỏa mãn a+b+c=1. Tìm Min \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}+\frac{1}{9abc}\)
\(A\ge\frac{9}{a+2+b+2+c+2}+\frac{1}{9abc}\)
\(\Rightarrow A\ge\frac{9}{7}+\frac{1}{9abc}\)
Theo BĐT AM-GM ta có: \(1=a+b+c\ge3\sqrt[3]{abc}\)
\(\Rightarrow abc\le\frac{1}{27}\)
\(\Rightarrow\frac{1}{9abc}\ge3\)
Do đó ta có:
\(A\ge\frac{9}{7}+3=\frac{30}{7}\)
cho a+b+c=3 tìm min \(P=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)
Cho a,b,c>0 thỏa mãn a+b+c=1
Tìm Min: A=\(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}+\frac{1}{9abc}\)
\(A=\text{∑}_{cyc}\frac{a}{a^2+1}+\frac{1}{9abc}=\text{∑}_{cyc}\frac{1}{a+\frac{1}{a}}+\frac{1}{9abc}\)
\(\ge\frac{9}{\text{∑}_{cyc}\left(a+\frac{1}{a}\right)}+\frac{1}{9abc}=P\)
Ta có \(P=\frac{9}{\frac{1}{a+b+c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}+\frac{1}{9abc}\)(Vì a + b + c = 1)
\(\ge\frac{9}{\frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{9}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}+\frac{1}{9abc}\)
\(=\frac{81}{10}.\frac{abc}{ab+bc+ca}+\frac{1}{9abc}\)
\(\Rightarrow P\ge2\sqrt{\frac{3}{ab+bc+ca}}-\frac{21}{10}\ge2\sqrt{\frac{3}{\frac{\left(a+b+c\right)^2}{3}}}-\frac{21}{10}=\frac{39}{10}\)
\(\Rightarrow A\ge P\ge\frac{39}{10}\)
Dấu "=" khi và chỉ khi a = b = c = \(\frac{1}{3}\)
Cho \(a,b,c>0;a+b+c\le1\). tìm min của \(S=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
Tìm min,max của P=xyz biết A= \(\frac{8-x^2}{16+x^4}+\frac{8-y^2}{16+y^4}+\frac{8-z^2}{16+z^4}\ge0.\)
Cho a;b;c >0 thỏa mã \(a+b+c\le3\)Tìm min P \(=\left(3+\frac{1}{a}+\frac{1}{b}\right)\left(3+\frac{1}{b}+\frac{1}{c}\right)\left(3+\frac{1}{c}+\frac{1}{a}\right)\)
cho a,b,c thõa mãn \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\) tìm min P=\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\)
cho a,b,c>0: \(\frac{1}{a+2}+\frac{3}{b+4}=< \frac{c+1}{c+3}\) tìm min Q=(a+1)(b+1)(c+1)
Ta có:
\(\frac{1}{a+2}+\frac{3}{b+4}\le1-\frac{2}{c+3}\)
\(\Rightarrow1-\frac{1}{a+2}\ge\frac{3}{b+4}+\frac{2}{c+3}\ge2\sqrt{\frac{6}{\left(b+4\right)\left(c+3\right)}}\)
\(\Leftrightarrow\frac{a+1}{a+2}\ge2\sqrt{\frac{6}{\left(b+4\right)\left(c+3\right)}}\left(1\right)\)
Tương tự : \(1-\frac{3}{b+4}\ge\frac{1}{a+2}+\frac{2}{c+3}\ge2\sqrt{\frac{2}{\left(a+2\right)\left(c+3\right)}}\Leftrightarrow\frac{b+1}{b+4}\ge2\sqrt{\frac{2}{\left(a+2\right)\left(c+3\right)}}\left(2\right)\)
và \(\frac{c+1}{c+3}\ge2\sqrt{\frac{3}{\left(a+2\right)\left(b+4\right)}}\left(3\right)\)
Từ 1,2,3 ta có:
\(\frac{a+1}{a+2}.\frac{b+1}{b+4}.\frac{c+1}{c+3}\ge\frac{48}{\left(a+2\right)\left(b+4\right)\left(c+3\right)}\Leftrightarrow Q\ge48\)
Vậy Min Q =48 khi a=1,b=5,c=3