Cho(100a+10b+c)
Số tự nhiên abc được biểu diễn là
A.100b+10c+a B.100c+10b+a
C.100a+10b+c D.100a+10+b
100a+10b+c+100a+10c+b=499 Tìm a,b,c
Bài 1: Chứng minh 100a + 10b + c chia hết cho 21 khi và chỉ khi a -2b + 4c chia hết cho 21
+, Nếu 100a+10b+c chia hết cho 21
=> 4.(100a+10b+c) chia hết cho 21
=> 400a+40b+4c chia hết cho 21
Mà 399a và 42b đều chia hết cho 21
=> 400a+40b+4c-399a-42b chia hết cho 21
=> a-2b+4c chia hết cho 21 (1)
+, Nếu a-2b+4c chia hết cho 21
Mà 399a và 42b đều chia hết cho 21
=> a-2b+4c+399a+42b chia hết cho 21
=> 400a+40b+4c chia hết cho 21
=> 4.(100a+10b+c) chia hết cho 21
=> 100a+10b+c chia hết cho 21 ( vì 4 và 21 là 2 số nguyên tố cùng nhau )
Tk mk nha
Chứng minh rằng :
100a + 10b + c chia hết cho 21 thì
a - 2b + 4c chia hết cho 21
Có: \(100a+10b+c=84a+16a+42b-32b-63c+64c\)
\(=\left(84a+42b-63c\right)+\left(16a-32b+64c\right)\)
\(=21\left(4a+2b-3c\right)+16\left(a-2b+4c\right)\)
Vì \(\left(100a+10b+c\right)⋮21\)và \(21\left(4a+b-3c\right)⋮21\)
\(\Rightarrow16\left(a-2b+4c\right)⋮21\), mặt khác \(\left(16,21\right)=1\)
\(\Rightarrow(a-2b+4c)⋮21\)(đpcm)
Cho ( 100a+ 10b+ c).(a+b+c)= 1926, trong đó a; b; c là các số nguyên. TÍnh a+b+c
Ai nhanh mk tick
CMR: nếu a,b,cthuoc Z
nếu (100a+10b+c)chia het cho 21 thì
a-2b+4c chia het cho 21
kho..............wa...................troi................thi......................ret.....................ai..............tich...............ung.....................ho....................minh..................voi................ret............wa
Tìm a , b , c biết
\(\left(a+b+c\right)^3=100a+10b+c\)
Tìm số tự nhiên n có 3 chữ số n = 100a + 10b + c sao cho \(\frac{n}{a+b+c}\) đạt GTNN
Cho S = abc + bca + cab
CMR : S không phải số chính phương.
Chú ý : abc = 100a + 10b + c
S = abc + bca + cab = 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= (100a + a + 10a) + (10b + 100b + b) + (c + 10c + 100c)
= 111a + 111b + 111c
= 111(a + b + c)
=> S ko phải là số chính phương