cho đường tròn O và điểm M sao cho OM=2R. Từ M kẻ 2 tiếp tuyến MA và MB với (O). Chứng minh tam giác MAB đều
Cho (O;R) , M là điểm nằm ngoài (O) sao cho OM = 2R . Từ M kẻ 2 tiếp tuyến MA và MB với đường tròn tại A và B . cmr : Tam giác MAB đều
Cho đường tròn (O) bán kính R và điểm M nằm ngoài đường tròn sao cho OM=2R. Qua M vẽ 2 tiếp tuyến MA, MB với đường tròn OM cắt AB tại H. a, Chứng minh OM vuông góc AB b, Chứng minh tam giác MAB là tam giác đều c, Qua điểm P bất kì thuộc cung nhỏ AB, vẻ tiếp tuyển thứ 3 cắt MA, BM lần lượt tại C,D. Tính chu vi tam giác MCD theo R. d, Tính số đo góc COD.
Giúp mình giải với ạ, mình cảm ơn nhiều.
a: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
b: Xét ΔOAM vuông tại A có \(sinAMO=\dfrac{OA}{OM}=\dfrac{1}{2}\)
nên \(\widehat{AMO}=30^0\)
Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MO là phân giác của góc AMB
=>\(\widehat{AMB}=2\cdot\widehat{AMO}=60^0\)
Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)
nên ΔMAB đều
c: Xét (O) có
CA,CP là các tiếp tuyến
Do đó: CA=CP và OC là phân giác của góc AOP
Xét (O) có
DB,DP là các tiếp tuyến
Do đó; DB=DP và OD là phân giác của góc BOP
ΔOAM vuông tại A
=>\(OA^2+AM^2=OM^2\)
=>\(AM^2=\left(2R\right)^2-R^2=3R^2\)
=>\(AM=R\sqrt{3}\)
Chu vi tam giác MCD là:
\(C_{MCD}=MC+CD+MD\)
\(=MC+CP+MD+DP\)
\(=MC+CA+MD+DB\)
=MA+MB=2MA=\(=R\sqrt{3}\cdot2=2R\sqrt{3}\)
d: Ta có: OC là phân giác của góc AOP
=>\(\widehat{AOP}=2\cdot\widehat{COP}\)
Ta có: OD là phân giác của góc BOP
=>\(\widehat{BOP}=2\cdot\widehat{DOP}\)
Xét tứ giác OAMB có
\(\widehat{OAM}+\widehat{OBM}+\widehat{AMB}+\widehat{AOB}=360^0\)
=>\(\widehat{AOB}+60^0+90^0+90^0=360^0\)
=>\(\widehat{AOB}=120^0\)
Ta có: \(\widehat{AOP}+\widehat{BOP}=\widehat{AOB}\)
=>\(2\cdot\left(\widehat{COP}+\widehat{DOP}\right)=120^0\)
=>\(2\cdot\widehat{COD}=60^0\cdot2\)
=>\(\widehat{COD}=60^0\)
Cho (O;R) , M là điểm nằm ngoài (O) sao cho OM = 2R . Từ M kẻ 2 tiếp tuyến MA và MB với đường tròn tại A và B . cmr : Tam giác MAB đều; b) Gọi C là giao điểm của MO với (O). Tính diện tích tứ giác AOBC. c) Qua O kẻ đường thẳng vuông góc với AO cắt BM tại D. CMR: DC là tiếp tuyến của (O)
a/
Xét tg vuông AMO có
\(\sin\widehat{AMO}=\dfrac{OA}{OM}=\dfrac{R}{2R}=\dfrac{1}{2}\Rightarrow\widehat{AMO}=30^o\)
Xét tg vuông AMO và tg vuông BMO có
MO chung; OA=OB=R => tg AMO = tg BMO (Hai tg vuông có cạnh huyền và 1 cạnh góc vuông bằng nhau)
\(\Rightarrow\widehat{AMO}=\widehat{BMO}=30^o\Rightarrow\widehat{AMO}+\widehat{BMO}=\widehat{AMB}=30^o+30^o=60^o\)
Xét tg MAB có
tg AMO = tg BMO (cmt) => MA=MB => tg MAB cân tại M
\(\Rightarrow\widehat{MAB}=\widehat{MBA}\)
Ta có
\(\widehat{MBA}+\widehat{MAB}=180^o-\widehat{AMB}=180^0-60^o=120^o\)
\(\Rightarrow2\widehat{MAB}=120^o\Rightarrow\widehat{MAB}=\widehat{MBA}=120^o:2=60^o\)
\(\Rightarrow\widehat{AMB}=\widehat{MAB}=\widehat{MBA}=60^o\) => tg MAB là tg đều
b/ Gọi H là giao của MO với AB
\(\Rightarrow AB\perp MO;HA=HB\) (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm vuông góc và chia đôi đoạn thẳng nối 2 tiếp điểm)
Ta có
\(S_{AOC}=\dfrac{1}{2}.HA.OC;S_{BOC}=\dfrac{1}{2}.HB.OC\) mà HA=HB (cmt)
\(\Rightarrow S_{AOC}=S_{BOC}\)
\(S_{AOBC}=S_{AOC}+S_{BOC}=2.S_{AOC}=HA.OC\)
Xét tg vuông AMO có
\(AO^2=OH.MO\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow OH=\dfrac{AO^2}{MO}=\dfrac{R^2}{2R}=\dfrac{R}{2}\)
Ta có
\(MH=MO-OH=2R-\dfrac{R}{2}=\dfrac{3R}{2}\)
Ta có
\(HA^2=MH.OH\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow HA=\sqrt{MH.OH}=\sqrt{\dfrac{3R}{2}.\dfrac{R}{2}}=\dfrac{R\sqrt{3}}{2}\)
\(\Rightarrow S_{AOBC}=HA.OC=\dfrac{R\sqrt{3}}{2}.R=\dfrac{R^2\sqrt{3}}{2}\)
c/
Ta có
\(MA\perp OA;OD\perp OA\) => MA//OD
\(\Rightarrow\widehat{MOD}=\widehat{AMO}=30^o\) (góc so le trong)
Xét tg vuông BMO có
\(\widehat{MOB}=90^o-\widehat{OMB}=90^o-30^o=60^o\)
\(\Rightarrow\widehat{BOD}=\widehat{MOB}-\widehat{MOD}=60^o-30^o=30^o\)
\(\Rightarrow\widehat{MOD}=\widehat{BOD}=30^o\)
Xét tg BOD và tg COD có
\(OB=OC=R\)
OD chung
\(\widehat{BOD}=\widehat{MOD}\) (cmt)
=> tg BOD = tg COD (c.g.c)\(\Rightarrow\widehat{OCD}=\widehat{OBD}=90^o\Rightarrow CD\perp OC\)
=> CD là tiếp tuyến với (O)
Cho (O, R) và M nằm ngoài đường tròn (0) sao cho OM = 2R. Kẻ MA, MB là hai tiếp tuyến với (O) ( A, B là tiếp điểm). Gọi H là giao điểm của OM với AB. 1) Chứng minh: OM vuông góc AB tại H. 2) Chứng minh: MH • MO = 3R^2 3) Chứng minh: tam giác MAB là tam giác đều. 4) MO cắt (O) lần lượt tại I và K (I nằm giữa M và K ). Chứng minh: AI là phân giác của MAH và MH • MO = MI • MK.
1: Xét (O) có
MA,MB là các tiếp tuyến
Do đó:MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của AB
=>MO\(\perp\)AB tại H và H là trung điểm của AB
2: Ta có: ΔOAM vuông tại A
=>\(AO^2+AM^2=OM^2\)
=>\(AM^2=\left(2R\right)^2-R^2=3R^2\)
Xét ΔAMO vuông tại A có AH là đường cao
nên \(MH\cdot MO=MA^2\)
=>\(MH\cdot MO=3R^2\)
3:
Xét ΔOAM vuông tại A có \(sinAMO=\dfrac{OA}{OM}=\dfrac{1}{2}\)
nên \(\widehat{AMO}=30^0\)
Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MO là phân giác của góc AMB
=>\(\widehat{AMB}=2\cdot\widehat{AMO}=2\cdot30^0=60^0\)
Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)
nên ΔMAB đều
4: Xét (O) có
\(\widehat{MAI}\) là góc tạo bởi tiếp tuyến AM và dây cung AI
\(\widehat{IKA}\) là góc nội tiếp chắn cung AI
Do đó: \(\widehat{MAI}=\widehat{IKA}\)
Xét ΔMAI và ΔMKA có
\(\widehat{MAI}=\widehat{MKA}\)
\(\widehat{AMI}\) chung
Do đó: ΔMAI đồng dạng với ΔMKA
=>\(\dfrac{MA}{MK}=\dfrac{MI}{MA}\)
=>\(MA^2=MI\cdot MK\)
mà \(MA^2=MH\cdot MO\)
nên \(MI\cdot MK=MH\cdot MO\)
Ta có: \(\widehat{MAI}+\widehat{OAI}=\widehat{OAM}=90^0\)
\(\widehat{HAI}+\widehat{OIA}=90^0\)(ΔAHI vuông tại H)
mà \(\widehat{OAI}=\widehat{OIA}\)(ΔOAI cân tại O)
nên \(\widehat{MAI}=\widehat{HAI}\)
=>AI là phân giác của góc MAH
cho đường tròn ( O,R). M LÀ MỘT ĐIỂM SAO CHO OM=2R. TỪ M KẺ HAI TIẾP TUYẾN MA, MB VỚI(O) ( TRONG ĐÓ A.B LÀ CÁC TIẾP ĐIỂM, A KHÁC B)
a) TÍNH MA THEO R
b) CHỨNG MINH TAM GIÁC ABM LÀ TAM GIÁC ĐỀU
c) GỌI N LÀ ĐIỂM THUỘC CUNG NHỎ AB. QUA N KẺ TIẾP TUYẾN VỚI (O), NÓ CẮT CÁC TIẾP TUYẾN Ax, By THEO THỨ TỰ TẠI C VÀ D. TÍNH TỈ SỐ CHU VI CỦA HAI TAM GIÁC MCD VÀ MAB
Cho đường tròn tâm O bán kính R và một điểm M sao cho OM=2R,từ M kẻ hai tiếp tuyến MA,MB của đường tròn tâm O bán kính R (A,B là tiếp điểm).
a)Chứng minh tam giác MAB đều,tính AM theo R
b)Qua điểm C thuộc ucng nhỏ AB vẽ tiếp tuyến với đường tròn tâm O bán kính R cắt MA tại E,cắt MB tại F,OF cắt AB tại K,OE cắt AB tại H.Chứng minh EK vuống góc với OF
c)Khi số đo cung BC=90 độ.Tính EF và diện tích tam giác OHK theo R
cho điểm M ngoài (O,R) với OM=2R . kẻ tiếp tuyến MA, MB vs đường tròn (o) với A và B là tiếp điểm
a/ cm om vuong goc với ab tại h
b/ chứng minh tam giac mab dều va tinh S tam giac MAB theo R
Cho đường tròn (O;3cm) và một điểm M cách O một khoảng bằng 6cm. Từ M kẻ tiếp tuyến MA đến đường tròn (A là tiếp điểm). a) Tính MA. b) Từ M kẻ tiếp tuyến thứ hai MB đến đường tròn (B là tiếp điểm). Chứng minh MO AB. c) Chứng minh tam giác MAB là tam giác đều và tính diện tích của tam giác này.
a: \(MA=3\sqrt{3}\left(cm\right)\)
b: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO\(\perp\)AB
Cho đường tròn (O;R) và điểm M nằm ngoài đường tròn sao cho OM=2R. Từ M vẽ tiếp tuyến MA và MB với đường (O).
a. CM: Tứ giác MAOB nội tiếp và MO vuông góc AB
b. CM: Tam giác AMB đều và tính AM theo R
c. Qua điểm C thuộc cung nhỏ AB vẽ tiếp tuyến với đường tròn (O) cắt AM tại E và cắt MB tại F. OF cắt AB tại K. OE cắt AB tại H. CM:chu vi tam giác MEF không đổi khi điểm C chạy trên cung nhỏ AB.
d. CM: EK vuông góc OF
e. CM: EF=2HK