Cho đường tròn (O) bán kính R và điểm M nằm ngoài đường tròn sao cho OM=2R. Qua M vẽ 2 tiếp tuyến MA, MB với đường tròn OM cắt AB tại H. a, Chứng minh OM vuông góc AB b, Chứng minh tam giác MAB là tam giác đều c, Qua điểm P bất kì thuộc cung nhỏ AB, vẻ tiếp tuyển thứ 3 cắt MA, BM lần lượt tại C,D. Tính chu vi tam giác MCD theo R. d, Tính số đo góc COD.
Giúp mình giải với ạ, mình cảm ơn nhiều.
a: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
b: Xét ΔOAM vuông tại A có \(sinAMO=\dfrac{OA}{OM}=\dfrac{1}{2}\)
nên \(\widehat{AMO}=30^0\)
Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MO là phân giác của góc AMB
=>\(\widehat{AMB}=2\cdot\widehat{AMO}=60^0\)
Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)
nên ΔMAB đều
c: Xét (O) có
CA,CP là các tiếp tuyến
Do đó: CA=CP và OC là phân giác của góc AOP
Xét (O) có
DB,DP là các tiếp tuyến
Do đó; DB=DP và OD là phân giác của góc BOP
ΔOAM vuông tại A
=>\(OA^2+AM^2=OM^2\)
=>\(AM^2=\left(2R\right)^2-R^2=3R^2\)
=>\(AM=R\sqrt{3}\)
Chu vi tam giác MCD là:
\(C_{MCD}=MC+CD+MD\)
\(=MC+CP+MD+DP\)
\(=MC+CA+MD+DB\)
=MA+MB=2MA=\(=R\sqrt{3}\cdot2=2R\sqrt{3}\)
d: Ta có: OC là phân giác của góc AOP
=>\(\widehat{AOP}=2\cdot\widehat{COP}\)
Ta có: OD là phân giác của góc BOP
=>\(\widehat{BOP}=2\cdot\widehat{DOP}\)
Xét tứ giác OAMB có
\(\widehat{OAM}+\widehat{OBM}+\widehat{AMB}+\widehat{AOB}=360^0\)
=>\(\widehat{AOB}+60^0+90^0+90^0=360^0\)
=>\(\widehat{AOB}=120^0\)
Ta có: \(\widehat{AOP}+\widehat{BOP}=\widehat{AOB}\)
=>\(2\cdot\left(\widehat{COP}+\widehat{DOP}\right)=120^0\)
=>\(2\cdot\widehat{COD}=60^0\cdot2\)
=>\(\widehat{COD}=60^0\)