Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Ninh
Xem chi tiết
tth_new
10 tháng 11 2019 lúc 13:39

Cho bạn kết quả phân tích thôi, tự phân tích nha:D

a) \(\Leftrightarrow2\left(x+4\right)\left(x+10\right)\left(x^2+14x+64\right)=0\)

b)\(\Leftrightarrow2\left(x-3\right)\left(x-4\right)\left(x^2-7x+26\right)=0\)

Khách vãng lai đã xóa
Nguyễn Linh Chi
10 tháng 11 2019 lúc 16:43

Dạng này thì em : \(\frac{6+8}{2}=7\)

Đặt x  + 7 =t

=> Phương trình ban đầu trở thành: \(\left(t+1\right)^4+\left(t-1\right)^4=272\)

<=> \(\left(t^4+4t^3+6t^2+4t+1\right)+\left(t^4-4t^3+6t^2-4t+1\right)=272\)

<=> \(2t^4+12t^2+2=272\)

<=> \(t^4+6t^2-135=0\)

<=> \(t^4+6t^2+9=144\)

<=> \(\left(t^2+3\right)^2=12^2\)

<=> \(\orbr{\begin{cases}t^2+3=12\\t^2+3=-12\end{cases}}\Leftrightarrow\orbr{\begin{cases}t^2=9\left(tm\right)\\t^2=-15\left(l\right)\end{cases}}\Leftrightarrow t=\pm3\)

Với t = 3  có: x + 7 = 3 <=> x =-4

Với t = -3 có: x +7 =-3 <=> x = -10

b) pt  \(\left(5-x\right)^4+\left(2-x\right)^4=17\)<=> \(\left(x-5\right)^4+\left(x-2\right)^4=17\)

Tương tự: \(\frac{5+2}{2}=\frac{7}{2}\)

Đặt: \(x-\frac{7}{2}=t\)

pt trở thành: \(\left(t-\frac{3}{2}\right)^4+\left(t+\frac{3}{2}\right)^4=17\)

<=> .... 

Làm thử tiếp nha.

Chú ý công thức : \(\left(a\pm b\right)^4=a^4\pm4a^3b+6a^2b^2\pm4ab^3+b^4\)

Khách vãng lai đã xóa
Nguyễn Linh Chi
10 tháng 11 2019 lúc 17:19

OK!

\(\left(t-\frac{3}{2}\right)^4+\left(t+\frac{3}{2}\right)^4=17\)

<=> \(\left(t^4+4.t^3.\frac{3}{2}+6t^2.\frac{9}{4}+4t.\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4\right)\)

\(+\left(t^4-4.t^3.\frac{3}{2}+6t^2.\frac{9}{4}-4.t\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4\right)=17\)

<=> \(2t^4+27t^2-\frac{55}{8}=0\)

<=> \(t^4+\frac{27}{2}t^2-\frac{55}{16}=0\)

<=> \(\left(t^4+2.t^2.\frac{27}{4}+\frac{729}{16}\right)-\frac{729}{16}-\frac{55}{16}=0\)

<=> \(\left(t^2+\frac{27}{4}\right)^2=49\)

<=> \(t^2+\frac{27}{4}=\pm7\)

<=> \(\orbr{\begin{cases}t^2=\frac{1}{4}\\t^2=-\frac{55}{4}\left(l\right)\end{cases}}\Leftrightarrow t=\pm\frac{1}{2}\). Thay vào tìm x nhé.

Khách vãng lai đã xóa
lê thị thu huyền
Xem chi tiết
Nguyễn Đình Toàn
15 tháng 4 2018 lúc 11:15

x^4*4x^3*2+6x^2*2^2+4x*2^3+2^4+x^4+4x^3*8+6x^2*8^2+4x*8^3+8^4=272

2x^4+40x^3+408x^2+2080x+4112=272

Đến đây là bt ra x = -4

Nguyễn Đình Toàn
15 tháng 4 2018 lúc 11:04

x = -4 nha 

Phạm Tuấn Đạt
15 tháng 4 2018 lúc 11:08

\(\left(x+2\right)^4+\left(x+2\right)^4=272\)

\(\Rightarrow2\left[\left(x+2\right)^4\right]=272\)

\(\Rightarrow\left(x+2\right)^4=136\)

Vậy...............

Natsumi
Xem chi tiết
Vũ thị Mai Hường
Xem chi tiết
Trần Ngyễn Yến Vy
Xem chi tiết
๖²⁴ʱ๖ۣۜTɦủү❄吻༉
5 tháng 5 2020 lúc 20:14

\(\left(x+1\right)^4+\left(x+3\right)^4=272\)

mk thấy đề sai thì phải,sửa nha.

\(\left(x+1\right)^4+\left(x+3\right)^4=256\)

\(\left(x+1\right)^4+\left(x+3\right)^4=4^4\)

TH1 : \(\left(x+1\right)+\left(x+3\right)=4\)

\(x+1+x+3=4\)

\(2x+4=4\Leftrightarrow2x=0\Leftrightarrow x=0\)

TH2 : \(\left(x+1\right)+\left(x+3\right)=-4\)

\(x+1+x+3=-4\)

\(2x+4=-4\Leftrightarrow2x=-8\Leftrightarrow x=-4\)

Lâu lâu chưa lạm dụng đến,chỉ nhớ bình phương chia 2 TH thôi,có j thông cảm ạ.

Khách vãng lai đã xóa
....
Xem chi tiết
Ricky Kiddo
28 tháng 8 2021 lúc 18:15

a) \(x^4-x^2+\dfrac{1}{4}-\dfrac{225}{4}=0\\ \left(x^2-\dfrac{1}{2}\right)^2-\dfrac{15}{2}^2=0\\ \left(x+7\right)\left(x-8\right)=0\\ \left[{}\begin{matrix}x=8\\x=-7\end{matrix}\right.\)

Vậy x = 8 hoặc x = -7

 

Nguyễn Lê Phước Thịnh
28 tháng 8 2021 lúc 21:20

a: Ta có: \(x^4-x^2-56=0\)

\(\Leftrightarrow x^4-8x^2+7x^2-56=0\)

\(\Leftrightarrow\left(x^2-8\right)\left(x^2+7\right)=0\)

\(\Leftrightarrow x^2-8=0\)

hay \(x\in\left\{2\sqrt{2};-2\sqrt{2}\right\}\)

T.Huyền
Xem chi tiết
Đỗ Linh Hương
Xem chi tiết
Akai Haruma
29 tháng 7 2018 lúc 15:38

a)

\((x-3)(x-5)(x-6)(x-10)=24x^2\)

\(\Leftrightarrow [(x-3)(x-10)][(x-5)(x-6)]=24x^2\)

\(\Leftrightarrow (x^2-13x+30)(x^2-11x+30)=24x^2\)

Đặt \(x^2-11x+30=a\). PT trở thành:
\((a-2x)a=24x^2\)

\(\Leftrightarrow a^2-2ax-24x^2=0\)

\(\Leftrightarrow a^2-6ax+4ax-24x^2=0\)

\(\Leftrightarrow a(a-6x)+4x(a-6x)=0\)

\(\Leftrightarrow (a+4x)(a-6x)=0\)

\(\Rightarrow \left[\begin{matrix} a+4x=0\\ a-6x=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x^2-7x+30=0\\ x^2-17x+30=0\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} (x-3,5)^2+17,75=0(\text{vô lý})\\ (x-15)(x-2)=0\end{matrix}\right.\)

\(\Rightarrow x=15\) hoặc $x=2$

Akai Haruma
29 tháng 7 2018 lúc 15:42

b)

Đặt \(x-7=a\). PT trở thành:

\((a+1)^4+(a-1)^4=272\)

\(\Leftrightarrow a^4+4a^3+6a^2+4a+1+a^4-4a^3+6a^2-4a+1=272\)

\(\Leftrightarrow 2a^4+12a^2+2=272\)

\(\Leftrightarrow a^4+6a^2-135=0\)

\(\Leftrightarrow (a^2+3)^2-144=0\Leftrightarrow (a^2+3)^2-12^2=0\)

\(\Leftrightarrow (a^2+15)(a^2-9)=0\)

\(\Rightarrow a^2-9=0\Rightarrow a=\pm 3\)

\(\Rightarrow x=a+7=\left[\begin{matrix} 4\\ 10\end{matrix}\right.\)

Akai Haruma
29 tháng 7 2018 lúc 15:47

c)

\(x^4-3x^3+2x^2-9x+9=0\)

Ta để ý tổng các hệ số bằng $0$ nên có một nghiệm bằng $1$

Vậy ta thực hiện tách hợp lý:

\(\Leftrightarrow (x^4-x^3)-(2x^3-2x^2)-(9x-9)=0\)

\(\Leftrightarrow x^3(x-1)-2x^2(x-1)-9(x-1)=0\)

\(\Leftrightarrow (x-1)(x^3-2x^2-9)=0\)

\(\Leftrightarrow (x-1)[(x^3-3x^2)+x^2-9]=0\)

\(\Leftrightarrow (x-1)[x^2(x-3)+(x-3)(x+3)]=0\)

\(\Leftrightarrow (x-1)(x-3)(x^2+x+3)=0\)

Dễ thấy \(x^2+x+3=(x+\frac{1}{2})^2+\frac{11}{4}\geq 0+\frac{11}{4}>0\) với mọi $x$

Do đó: \((x-1)(x-3)=0\Rightarrow \left[\begin{matrix} x=1\\ x=3\end{matrix}\right.\)

Hắc Thiên
Xem chi tiết