Tìm giá trị nhỏ nhất của biểu thức P=\(\frac{1}{ac+1}+\frac{1}{b+c}\)
Cho các số thực a,b,c thỏa mãn 5(a2+b2+c2)=6(ab+ac+bc). Tìm giá trị lớn nhất và nhỏ nhất của biểu thức P=(a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))
Cho a, b, c > 0 và \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)..Tìm giá trị nhỏ nhất của biểu thức P = abc
Cho biểu thức: \(M=\left(\frac{\left(a-1\right)^2}{31+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right):\frac{a^3+4a}{4a^2}\)
a) Rút gọn M
b) Tìm a để M > 0
c) Tìm giá trị của a để biểu thức M đạt giá trị lớn nhất. Tìm giá trị nhỏ nhất đó
Cho biểu thức A= \(\frac{10}{x-3\sqrt{x}-4}+\frac{1}{1+\sqrt{x}}-\frac{2}{\sqrt{x}-4}\)
a/ Rút gọn biểu thức A?
b/ Tìm giá trị của x để A = \(-\frac{1}{2}\)
c/ Tìm giá trị nhỏ nhất của A?
Xét biểu thức A = \(\frac{1}{15}\cdot\frac{225}{x+2}+\frac{3}{14}\cdot\frac{196}{3\cdot x+6}\)
a) Rút gọn biểu thức A.
b) Tìm các giá trị của x để A có giá trị là số nguyên.
c) Trong các giá trị của A. Tìm giá trị lớn nhất và giá trị nhỏ nhất.
Làm khâu rút gọn thôi
\(=\frac{15}{x+2}+\frac{42}{3x+6}\)
\(=\frac{15}{x+2}+\frac{42}{3\left(x+2\right)}\)
\(=\frac{3.15+42}{3\left(x+2\right)}\)
\(=\frac{87}{3\left(x+2\right)}\)
\(=\frac{29}{x+2}\)
Câu b có phải để tử chia hết cho mẫu không nhỉ? Không chắc thôi để ngkh làm
a, A=15/x+2 +42/3x+6
=45/3x+6 + 42/3x+6
=87/3x+6 = 29x+2
b,để A có giá trị là số nguyên thì 29 phải chia hết cho x+2 hay x+2 thuộc tập hợp ước của 29 mà Ư(29)={29;-29;1;-1} .
Xét từng trường hợp .C, lấy trường hợp lớn nhất và bé nhất
Cho a,b,c là các số dương và \(a^2+b^2+c^2=1\) Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\)
Do a, b, c dương áp dụng bất đẳng thức Cô-si ta có:
\(\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\ge2\sqrt{\frac{b^2c^2}{a^2}.\frac{a^2c^2}{b^2}}=2c^2\)(1)
Tương tự \(\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}\ge2a^2\) (2) và \(\frac{b^2c^2}{a^2}+\frac{a^2b^2}{c^2}\ge2b^2\) (3)
Cộng (1), (2), (3) vế theo vế rồi chia 2 vế cho 2 ta được \(\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}\ge a^2+b^2+c^2=1\)
Ta có \(P^2=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+2\left(\frac{bc}{a}.\frac{ac}{b}+\frac{ac}{b}.\frac{ab}{c}+\frac{bc}{a}.\frac{ab}{c}\right)\)
\(P^2=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+2\left(a^2+b^2+c^2\right)=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+2\ge1+2=3\)
Vậy \(P_{min}=\sqrt{3}\) \(\Leftrightarrow\) \(a=b=c=\frac{\sqrt{3}}{3}\)
a)tìm giá trị nhỏ nhất của biểu thức:
A= \(\left(2x+\frac{1}{3}\right)^4\)-1
b) Tìm giá trị lớn nhất của biểu thức :
B=\(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi
a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)
Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)
\(\Leftrightarrow A\ge-1\)
Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1
Vậy Giá trị nhỏ nhất của A là -1
b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1
e cái gì là em bé à
Có ba số thực dương a,b,c thỏa mãn a+b+c=1 . Tìm giá trị nhỏ nhất của biểu thức P=\(\frac{9}{2\left(ab+bc+ac\right)}+\frac{2}{a^2+b^2+c^2}\)
\(\frac{9}{2\left(ab+bc+ca\right)}+\frac{2}{a^2+b^2+c^2}\)
\(=\frac{1}{2\left(ab+bc+ca\right)}+2.\left(\frac{4}{2\left(ab+bc+ca\right)}+\frac{1}{a^2+b^2+c^2}\right)\)
\(\ge\frac{1}{2.\frac{\left(a+b+c\right)^2}{3}}+2.\frac{\left(2+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\)
\(=\frac{1}{2.\frac{1}{3}}+2.\frac{9}{1}=\frac{39}{2}\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
cho a,b,c>0 và a+b+c . tìm giá trị nhỏ nhất của biểu thức sau: 2(a+b+c) + (\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))
1,cho biểu thức C=\(\left(\frac{x}{x+2}+\frac{5x-12}{5x^2-12x}-\frac{8}{5x^2+10x}\right):\frac{x^2-2x+2}{x^2-x-6}\)
a,tìm điều kiện để giá trị của C được xác định
b,rút gọn biểu thức
c,tìm giá trị của x để giá trị của C nhỏ nhất.Xác định giá trị nhỏ nhất đó
d,tìm các giá trị nguyên của x để C có giá trị nguyên