Cho đa thức f(x) thỏa mãn 2.f(x) - x.f(\(\frac{1}{x}\)) = x2. Tính f(2) và f(\(\frac{1}{3}\))
Bài 12*.Cho đa thức f(x) thỏa mãn 2f(x) - x.f(1/x) = x2 với mọi x thuộc R.
Tính f(2) và f(1/3).
2f(1/2)-1/2f(2)=1/4 và 2f(2)-2f(1/2)=4
=>f(2)=17/6
2f(1/3)-1/3*f(3)=1/9 và 2*f(3)-3*f(1/3)=9
=>f(1/3)=29/27
cho đa thức f(x) xác định với mọi x thỏa mãn
x.f(x+2) =( x2
-9).f(x)
1) tính f(5)
2) chứngminh rằng f(x) có ít nhất 3 nghiệm
\(a,f\left(5\right)\Rightarrow x=3\\ 3f\left(5\right)=0f\left(3\right)\Rightarrow f\left(5\right)=0\\ b,x=0\Rightarrow0f\left(2\right)=-9f\left(0\right)\Rightarrow f\left(0\right)=0\)
=> x = 0 là nghiệm
\(x=-3\Rightarrow-3f\left(-1\right)=\left(9-9\right)f\left(-3\right)=0f\left(-3\right)\\ \Rightarrow f\left(-1\right)=0\)
=> x = -1 là nghiệm
Theo ý a) ta có \(x=5\)
\(\Rightarrow f\left(x\right)\) có 3 nghiệm \(=\left\{0;-1;5\right\}\)
Cho đa thức f(x) thỏa mãn 3.f(x) + 2.x.f(1/x) = 5x2 - 7. Tính f(2)
Từ giả thiết suy ra:
\(3f\left(2\right)+2.2.f\left(\frac{1}{2}\right)=13\Rightarrow3.f\left(2\right)+4.f\left(\frac{1}{2}\right)=13\) (1)
\(3f\left(\frac{1}{2}\right)+2.\frac{1}{2}.f\left(2\right)=\frac{5}{4}-7\Rightarrow3.f\left(\frac{1}{2}\right)+f\left(2\right)=-\frac{23}{4}\) (2)
Nhân cả vế của của (1) với 3 ta được 9.f(2) + 12.f(1/2) = 39
Nhân cả 2 vế của (2) với 4 ta được 4.f(2) + 12.f(1/2) = -23
Trừ từng vế hai đẳng thức trên ta được: 5.f(2) = 62 => f(2) = 62/5
cho đa thức f(x) xác định với mọi x thỏa mãn
x.f(x+2) =( x\(^2\)-9).f(x)
1) tính f(5)
2) chứngminh rằng f(x) có ít nhất 3 nghiệm
1) Xét với x=3x=3 thì : 3.f(5)=(32−9).f(3)3.f(5)=(32−9).f(3)
⇒3.f(5)=0⇒f(5)=0⇒3.f(5)=0⇒f(5)=0 (*)
2) Xét với x=0⇔0=−9.f(0)⇒f(0)=0x=0⇔0=−9.f(0)⇒f(0)=0
nên x=0x=0 là 1 nghiệm của đa thức f(x)f(x) (1)
Xét với x=−3⇔3.f(−1)=0⇒f(−1)=0x=−3⇔3.f(−1)=0⇒f(−1)=0
nên x=−1x=−1 là 1 nghiệm của đa thức f(x)f(x) (2)
Từ (*)(1)(2) ⇒⇒ f(x)f(x) có ít nhất 3 nghiệm.
1) Xét với x=3x=3 thì : 3.f(5)=(32−9).f(3)3.f(5)=(32−9).f(3)
⇒3.f(5)=0⇒f(5)=0⇒3.f(5)=0⇒f(5)=0 (*)
2) Xét với x=0⇔0=−9.f(0)⇒f(0)=0x=0⇔0=−9.f(0)⇒f(0)=0
nên x=0x=0 là 1 nghiệm của đa thức f(x)f(x) (1)
Xét với x=−3⇔3.f(−1)=0⇒f(−1)=0x=−3⇔3.f(−1)=0⇒f(−1)=0
nên x=−1x=−1 là 1 nghiệm của đa thức f(x)f(x) (2)
Từ (*)(1)(2) ⇒⇒ f(x)f(x) có ít nhất 3 nghiệm.
Cho đa thức f(x) thoả mãn: \(x.f\left(x\right)-x.f\left(\frac{1}{x}\right)=x^2\), với mọi \(x\inℝ\). Tính f(4); \(f\left(\frac{1}{2}\right)\)
a) Cho đa thức f(x)= 5.f(-2).x2 thỏa mãn với mọi x. Tính f(-3)
b) Cho f(x) thỏa mãn: f(x) + x.f(-x)=x+1 với mọi x. Tính f(-1)
c) Cho f(x)= ax2 + bx + c thỏa mãn f(1)=f(-1). Chứng minh rằng: f(x)=f(-x)
Giúp mình nha. Mình cảm ơn trước nhé :P
Cho đa thức f(x) thỏa mãn: f(x)+x.f(-x)=X+1 với mọi x. Tính f(x)
Mình ko dám chắc về cách làm nữa:
f(x)+x.f(-x)=x+1
Nếu x=0:
f(x)+0.f(-x)=x+1
f(x)=0+1=1
Nếu x=-1:
f(-1)+(-1).f(--1)=-1+1
f(-1)-f(1)=0
Nếu x=1:
f(1)+1.f(-1)=1+1
f(1)+f(-1)=2
f(1)+1.f(-1)=1+1
f(1)+f(-1)=2
=> f(1)+f(-1)-[f(-1)-f(1)]=f(1)+f(-1)+[f(-1)-f(1)]=2
f(1)+f(-1)-f(-1)+f(1)=f(1)+f(-1)+f(-1)-f(1)=2
f(1).2=2.f(-1)=2
f(1)=f(-1)=1
Vậy với mọi x thì f(x)=1
cho hàm số y =f(x) thỏa mãn x.f(x)+f(\(\frac{1}{x}\)) =2x+1.Tính f(2)
Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.