Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thắng Nguyễn
Xem chi tiết
Vũ Tri Hải
18 tháng 5 2017 lúc 23:17

đặt x = a; y = b/2; z = c/3. khi đó ta có \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\le1.\)

quy đồng, nhân chéo ta được (1+x)(1+y) + (1+y)(1+z) + (1+z)(1+x) \(\le\)(1+x)(1+y)(1+z).

nhân phá ngoặc, rút gọn ta được x + y + z + 2 \(\le\)xyz. (1)

mặt khác ta có \(1\ge\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}\ge\frac{9}{x+y+z+3}\)

nên x+ y + z \(\ge\)6 (2)

từ (1) và (2) suy ra xyz \(\ge\)8 hay S = abc \(\ge\)48.

dấu bằng xảy ra khi x = y = z = 2 hay a = 2; b = 4; c = 6.

vậy Min S = 48.

Thắng Nguyễn
19 tháng 5 2017 lúc 7:08

hình như cái BĐT ở dưới chỗ "Mặc khác ta có" sai

Thắng Nguyễn
19 tháng 5 2017 lúc 7:11

à nhầm sr

Đinh Cao Sơn
Xem chi tiết
Phùng Minh Quân
22 tháng 7 2019 lúc 6:24

\(S=\left(a^2+\frac{1}{4}\right)+\left(b^2+\frac{1}{4}\right)+\left(c^2+\frac{1}{4}\right)+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\)

\(\ge a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{3}{4}=\left(a+\frac{1}{4a}\right)+\left(b+\frac{1}{4b}\right)+\left(c+\frac{1}{4c}\right)-\frac{3}{4}\)

\(\ge1+1+1-\frac{3}{4}=\frac{9}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{2}\)

Phùng Minh Quân
22 tháng 7 2019 lúc 6:28

à quên tách ra mà quên đoạn sau :v thêm vào tí nhé 

\(S\ge\left(a+\frac{1}{4a}\right)+\left(b+\frac{1}{4b}\right)+\left(c+\frac{1}{4c}\right)+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\)

\(\ge2\sqrt{\frac{a}{4a}}+2\sqrt{\frac{b}{4b}}+2\sqrt{\frac{c}{4c}}+\frac{3}{4}.\frac{9}{a+b+c}-\frac{3}{4}\ge1+1+1+\frac{3}{4}.\frac{9}{\frac{3}{2}}-\frac{3}{4}=\frac{27}{4}\)

Trần Sỹ Hội
Xem chi tiết
Nguyễn Ngọc Linh Nhi
Xem chi tiết
Trang Kenny
Xem chi tiết
Upin & Ipin
27 tháng 2 2020 lúc 21:03

\(P=a-\frac{ab^2}{1+b^2}+b-\frac{bc^2}{1+c^2}+c-\frac{ca^2}{1+a^2}\)

    \(\ge a-\frac{ab^2}{2b}+b-\frac{bc^2}{2c}+c-\frac{ca^2}{2c}\) (AM-GM)

      \(\ge a-\frac{ab}{2}+b-\frac{bc}{2}+c-\frac{ac}{2}\ge\left(a+b+c\right)-\frac{\left(a+b+c\right)^2}{6}\ge3-\frac{3}{2}=\frac{3}{2}\)

Vay MinP=3/2 dau = xay ra khi a=b=c=1

Khách vãng lai đã xóa
lớp 10a1 tổ 1
Xem chi tiết
Họ Và Tên
Xem chi tiết
Đặng Ngọc Quỳnh
24 tháng 10 2020 lúc 13:11

Ta có:

\(\frac{1}{a+2}+\frac{3}{b+4}\le1-\frac{2}{c+3}\)

\(\Rightarrow1-\frac{1}{a+2}\ge\frac{3}{b+4}+\frac{2}{c+3}\ge2\sqrt{\frac{6}{\left(b+4\right)\left(c+3\right)}}\)

\(\Leftrightarrow\frac{a+1}{a+2}\ge2\sqrt{\frac{6}{\left(b+4\right)\left(c+3\right)}}\left(1\right)\)

Tương tự : \(1-\frac{3}{b+4}\ge\frac{1}{a+2}+\frac{2}{c+3}\ge2\sqrt{\frac{2}{\left(a+2\right)\left(c+3\right)}}\Leftrightarrow\frac{b+1}{b+4}\ge2\sqrt{\frac{2}{\left(a+2\right)\left(c+3\right)}}\left(2\right)\)

và \(\frac{c+1}{c+3}\ge2\sqrt{\frac{3}{\left(a+2\right)\left(b+4\right)}}\left(3\right)\)

Từ 1,2,3  ta có:

\(\frac{a+1}{a+2}.\frac{b+1}{b+4}.\frac{c+1}{c+3}\ge\frac{48}{\left(a+2\right)\left(b+4\right)\left(c+3\right)}\Leftrightarrow Q\ge48\)

Vậy Min Q =48 khi a=1,b=5,c=3

Khách vãng lai đã xóa
QUan
Xem chi tiết
nana
Xem chi tiết
Thắng Nguyễn
31 tháng 7 2017 lúc 18:31

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:\(F=\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\)

\(=\frac{a}{2b+c}+\frac{b}{2c+a}+\frac{c}{2a+b}\)

\(=\frac{a^2}{2ab+ac}+\frac{b^2}{2bc+ab}+\frac{c^2}{2ac+bc}\)

\(\ge\frac{\left(a+b+c\right)^2}{2ab+ac+2bc+ab+2ac+bc}=\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\)

\(\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\) khi \(a=b=c=\frac{1}{3}\)