Tại sao \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}\)
Tại Sao \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}\)
(a+b+c/b+c+d)^3=(a+b+c/b+c+d).(a+b+c/b+c+d).(a+b+c/b+c+d)=a/b.b/c.c/d
Cho a,b,c,d thoả mãn:
\(\frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{a+c+d}{b}=\frac{d+a+b}{c}\)
Tìm: \(B=\left(1+\frac{a+b}{c+d}\right)\cdot\left(1+\frac{b+c}{d+d}\right)\cdot\left(1+\frac{c+d}{a+b}\right)\cdot\left(1+\frac{d+a}{b+c}\right)\)
1. cho \(\frac{a}{b}=\frac{c}{d};\)(b,c,d khac 0)
cmr: \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\); \(\frac{a\cdot b}{c\cdot d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
a, Ta có:\(\frac{a-b}{a+b}=\frac{bk-b}{bk+b}=\frac{b.\left(k-1\right)}{b.\left(k+1\right)}=\frac{k-1}{k+1}\left(1\right)\)
Lại có \(\frac{c-d}{c+d}=\frac{dk-d}{dk+d}=\frac{d.\left(k-1\right)}{d.\left(k+1\right)}=\frac{k-1}{k+1}\left(2\right)\)
Từ (1) và (2) => ĐPCM
b, Ta có \(\frac{a.b}{c.d}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\left(1\right)\)
Lại có \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) => ĐPCM
Hi :D
Sau đây là một số bài mình sưu tầm được và mình post lên đây nhầm mong muốn các bạn đóng góp lời giải của mình vào
Câu 1:
Với a,b,c là các số thực dương và \(abc=1\).Chứng minh rằng:
\(\frac{1}{4a^2-2a+1}+\frac{1}{4b^2-2b+1}+\frac{1}{4c^2-2c+1}\ge1\left(\cdot\right)\)
Câu 2:
Với a,b,c là các số thực dương và \(abc=1\).Chứng minh rằng:
\(\frac{1}{\sqrt{4a^2+a+4}}+\frac{1}{\sqrt{4b^2+b+4}}+\frac{1}{\sqrt{4c^2+c+4}}\le1\left(\cdot\cdot\right)\)
Câu 3:
Với a,b,c,d là các số thực dương và \(\frac{1}{a+3}+\frac{1}{b+3}+\frac{1}{c+3}+\frac{1}{d+3}=1\).Chứng minh rằng:
\(\frac{a}{a^2+3}+\frac{b}{b^2+3}+\frac{c}{c^2+3}+\frac{d}{d^2+2}\le1\left(\cdot\cdot\cdot\right)\)
Câu 4:
Với a,b,c,d thõa mãn điều kiện \(a+b+c+d=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\),Chứng minh rằng:
\(2\left(a+b+c+d\right)\ge\sqrt{a^2+3}+\sqrt{b^2+3}+\sqrt{c^2+3}+\sqrt{d^2+3}\left(\cdot\cdot\cdot\cdot\right)\)
Câu 5:
Với a,b,c là các số thực không âm.Chứng minh rằng:
\(\frac{a^2-bc}{2a^2+b^2+c^2}+\frac{b^2-ca}{a^2+2b^2+c^2}+\frac{c^2-ab}{a^2+b^2+2c^2}\ge0\left(\cdot\cdot\cdot\cdot\cdot\cdot\right)\)
Continue...
Bài 1. Ta có: \(a\left(a+2\right)\left(a-1\right)^2\ge0\therefore\frac{1}{4a^2-2a+1}\ge\frac{1}{a^4+a^2+1}\)
Thiết lập tương tự 2 BĐT còn lại và cộng theo vế rồi dùng Vasc (https://olm.vn/hoi-dap/detail/255345443802.html)
Bài 5: Bất đẳng thức này đúng với mọi a, b, c là các số thực. Chứng minh:
Quy đồng và chú ý các mẫu thức đều không âm, ta cần chứng minh:
\(\frac{1}{2}\left(a^2+b^2+c^2-ab-bc-ca\right)\Sigma\left[\left(a^2+b^2\right)+2c^2\right]\left(a-b\right)^2\ge0\)
Đây là điều hiển nhiên.
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)CM
a)\(\frac{a\cdot c}{b\cdot d}=\frac{a^2+c^2}{b^2+d^2}\)
b)\(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
c)\(\left(a+2c\right)\cdot\left(b+d\right)=\left(a+c\right)\cdot\left(b+2d\right)\)
giúp mk vs
Bài 1: cho \(a,b,c\ge0\) và a+b+c=1. Chứng minh rằng :
a,\(\left(1-a\right)\cdot\left(1-b\right)\cdot\left(1-c\right)\ge8\cdot a\cdot b\cdot c\)
b,\(16\cdot a\cdot b\cdot c\ge a+b\)
c,\(\frac{a}{1+a}+\frac{2\cdot b}{2+b}+\frac{3\cdot c}{3+c}\le\frac{6}{7}\)
Bài 2: cho a,b,c>0 và a.b.c=0 chứng minh rằng:
\(\frac{b\cdot c}{a^2\cdot b+a^2\cdot c}+\frac{a\cdot c}{b^2\cdot c+b^2\cdot a}+\frac{a\cdot b}{c^2\cdot a+c^2\cdot b}\ge\frac{3}{2}\)
Bài 1 :
a) Ta có : \(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Áp dụng bđt Cauchy : \(a+b\ge2\sqrt{ab}\) , \(b+c\ge2\sqrt{bc}\) , \(c+a\ge2\sqrt{ca}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) hay \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge8abc\)
Tính \(y=\frac{a\cdot b}{\left(b-c\right)\cdot\left(c-a\right)}+\frac{b\cdot c}{\left(c-a\right)\cdot\left(a-b\right)}+\frac{a\cdot c}{\left(a-b\right)\cdot\left(b-c\right)}\)
bai nay de dong len roi khu la ra
dap an y=-1
Cho \(\frac{a}{3\cdot b+c}=\frac{b}{a\cdot3+c}=\frac{c}{3\cdot a+b}\)\(\left(a+b+c\ne0\right)va\left(a;b;c\ne0\right)\)
Tinh \(\frac{3\cdot b+c}{a}+\frac{a+3\cdot c}{b}+\frac{3\cdot a+b}{c}\)
Vậy dã dễ dàng thấy :
a.3 + c = 3 . a + b = 3 . b + c và a = b = c
Tương tự dãy dưới tính ra :
4 + 4 + 4 = 12
Dãy tính bằng 12
Ban tren oi co the giai thich can ke ra duoc khong ?
Ap dung t/c day ti so bang nhau , ta co :
\(\frac{3\cdot b+c}{a}+\frac{a+3\cdot c}{b}+\frac{3\cdot a+b}{c}=\frac{a+b+c}{3\cdot b+c+a+3\cdot c+3\cdot a+b}\)
\(=\frac{a+b+c}{3\cdot a+a+3\cdot b+b+3\cdot c+c}\)
\(=\frac{a+b+c}{4\cdot a+4\cdot b+4\cdot c}\)
\(=\frac{a+b+c}{4\cdot\left(a+b+c\right)}\)
\(=\frac{1}{4}\)
\(\frac{a}{3\cdot b+c}=\frac{1}{4}\Rightarrow\frac{3\cdot b+c}{a}=4\)
\(\frac{b}{a+3\cdot c}=\frac{1}{4}\Rightarrow\frac{a+3\cdot c}{b}=4\)
\(\frac{c}{3\cdot a+b}=\frac{1}{4}\Rightarrow\frac{3\cdot a+b}{c}=4\)
Ta co \(\frac{3\cdot b+c}{a}+\frac{a+3\cdot c}{b}+\frac{3\cdot a+b}{c}\)
\(=4+4+4\)
\(=12\)
cho a, b, c là 3 số thực khác 0, thỏa mãn
\(\frac{a+b-2017\cdot c}{c}=\frac{b+c-2017\cdot a}{a}=\frac{c+a-2017\cdot b}{b}\)
tính giá trị của biểu thức
B=\(\left(1+\frac{b}{a}\right)\cdot\left(1+\frac{a}{c}\right)\cdot\left(1+\frac{c}{a}\right)\)