5) Chứng tỏ rằng phân số có dạng\(\frac{2a+3}{a+2}\)là phân số tối giản.
Chứng tỏ rằng phân số có dạng:
\(\frac{2a+3}{a+2}\)
là phân số tối giản
Đặt UC(2a+3,a+2)=d
=> \(\hept{\begin{cases}2a+3⋮d\\a+2⋮d\end{cases}\Leftrightarrow}2\left(a+2\right)-2a-3⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy phân số là tối giản
P/S: PP chung của dạng này là: Đặt UC của Tử và mẫu là d, sau đó thêm bớt thích hợp để CM d=1
Chứng tỏ rằng phân số có dạng \(\frac{2a+3}{a+2}\)là phân số tối giản
gọi d là UCLN(2a+3;a+2)
ta có :
2(a+2)-2a+3 chia hết cho d
=>2a+4-2a+3 chia hết cho d
=>1 chia hết cho d
=>d=1
=>\(\frac{2a+3}{a+2}\) là phân số tối giản
dễ khoi , 2a+3=(a+2)+(a+2)-1
mà 4+2 chia hết cho a+2
=> 1 chia hết cho a+2
=> UC của 2a+3 và a+2 là 1
vậu nó tối giản , ko hiểu thì nói vs tui
Gọi d là ƯCLN(2a+3;a+2)
Ta có : 2a+3 chia hết cho d
2(a+2) - 2a+3 chia hết cho d
=> 1 chia hết cho d
=> \(\frac{2a+3}{a+2}\)là phân số tối giản
. Chứng tỏ rằng phân số có dạng \(\frac{3a+4}{2a+3}\) là phân số tối giản ?
Gọi d là UCLN(3a+4;2a+3)
=>3a+4 chia hết cho d;2a+3 chia hết cho d
=>2(3a+4) chia hết cho d;3(2a+3)chia hết cho d
Hay 6a+8 chia hết cho d;6a+9 chia hết cho d
=>(6a+9)-(6a+8)chia hết cho d
=>6a+9-6a-8 chia hết cho d
=>1 chia hết cho d
=>d=1 hoặc -1
=>3a+4 và 2a+3 là hai số nguyên tố cùng nhau
Vậy phân số có dạng \(\frac{3a+4}{2a+3}\)là phân số tối giản
Chứng tỏ rằng ps có dạng : 2a+3/a+2 là phân số tối giản.
Cần gấp tối nay
Gọi \(d=ƯCLN\left(2a+3;a+2\right)\)
\(\Leftrightarrow\hept{\begin{cases}2a+3⋮d\\a+2⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a+3⋮d\\2a+4⋮d\end{cases}}\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(2a+3;a+2\right)=1\)
\(\Leftrightarrow\frac{2a+3}{a+2}\) là phân số tối giản
chứng tỏ rằng phân số có dạng 3a+4/ 2a+3 là phân số tối giản
Gọi d là ƯCLN(3a+4;2a+3)
Ta có: 3a+4 chia hết cho d => (3a+4).2=6a+8 chia hết cho d (1)
2a+3 chia hết cho d => (2a+3).3=6a+9 chia hết cho d (2)
Từ (1) và (2) => (6a+9)-(6a+8)=1 chia hết cho d
=> d thuộc Ư(1)={-1;1}
Vì d ={-1;1} => 3a+4/2a+3 là phân số tối giản ( ĐPCM )
goi d la UCLN cua 3a+4 va 2a+3 , ta can chung minh d =1 .
ta co : 3a+4 = 2(3a+4)=6a+8.
2a+3=3(2a+3)=6a+9.
Vi 6a+9 - 6a+8 = 1 => d=1 .
Vay phan so 3a+4/2a+3 toi gian.
k minh nhiu nhiu nha.
Chứng tỏ rằng phân số có dạng \(\frac{3a+4}{2a+3}\) là một phân số tối giản
Gọi d là ƯCLN(3a+4;2a+3)
Ta có: 3a+4 - 2a+3 chia hết cho d
Suy ra: 2.(3a+4)- 3.(2a+3) cũng chia hết cho d
6a + 8 - 6a+ 9 chia hết cho d
Suy ra: -1 chia hết cho d, nên d = 1
Vậy phân số \(\frac{3a+4}{2a+3}\) là 1 phân số tối giản
chứng tỏ rằng phân số có dạng 3a+4/2a+3 là phân số tối giản
Goi d la UCLN(3a+4,2a+3) (d thuoc N*)
Ta co: 3a+4 chia het cho d
2a+3 chia het cho d
Suy ra: 3(2a+3)-2(3a+4) chia het cho d
Suy ra : 1 chia het cho d
Suy ra: d = 1
Suy ra: dpcm
chứng tỏ rằng phân số có rạng:
2a+3/a+2
là phân số tối giản
Gọi UCLN(2a+3,a+2)=d
Ta có:2a+3 chia hết cho d
a+2 chia hết cho d
=>2a+3 chia hết cho d
2(a+2) chia hết cho d
=>2a+3 chia hết cho d
2a+4 chia hết cho d
=>(2a+4)-(2a+3) chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy phân số có dạng \(\frac{2a+3}{a+2}\) tối giản
GỌI Đ LÀ ƯC (2A+3/A+2)
=>2A+3 CHIA HẾT CHO Đ
=>A+2 CHIA HẾT CHO Đ
=>(2A+3)-(A+2) CHIA HẾT CHO Đ
=>Đ CHIA HẾT CHO 1
=>Đ=1
=>\(\frac{2A+3}{A+2}\) LÀ PHÂN SỐ TỐI GIẢN
chứng tỏ phân số có dạng 3a + 4 phần 2a + 3 là phân số tối giản
gọi d là ƯCLN(3a+4;2a+3)
ta có 3a+4 chia hết cho d;2a+3 chia hết cho d
suy ra 2(3a+4) chia hết cho d;3(2a+3) chia hết cho d
suy ra 6a+8 chia hết cho d;6a+9 chia hết cho d
suy ra [(6a+9)-(6a+8)] chia hết cho d
suy ra 1chia hết cho d
nên d=1;-1
suy ra3a+4;2a+3 là 2 SNT cùng nhau suy ra 3a+4phần 2a+3 là phân số tối giản