Rút gọn biểu thức
Cos(a+26pi)-2cos(a-7pi)-cos(1,5pi)-cos(a+2003pi/2)+cos(a-1,5pi).cot(a-8pi)
rút gọn biểu thức:
sin a*cos a*(tan a+cot a)
$\sin a.\cos a.(\tan a+\cot a)\\=\sin a.\cos a.\tan a+\sin a.\cos a.\cot a\\=\sin a.\cos a.\dfrac{\sin a}{\cos a}+\sin a.\cos a.\dfrac{\cos a}{\sin a}\\=\sin^2 a+\cos^2 a\\=1$
\(sin\left(a\right).cos\left(a\right).\left(tan\left(a\right)+cot\left(a\right)\right)\\ =sin\left(a\right).cos\left(a\right).tan\left(a\right)+sin\left(a\right).cos\left(a\right).cot\left(a\right)\\ =sin\left(a\right).cos\left(a\right).\dfrac{sin\left(a\right)}{cos\left(a\right)}+sin\left(a\right).cos\left(a\right).\dfrac{cos\left(a\right)}{sin\left(a\right)}\\ =sin^2\left(a\right)+cos^2\left(a\right)=1\)
thu gọn biểu thức sau: a = cos(7pi - x) + 3sin((3pi)/2 + x) - cos(pi/2 - x) - sin x
\(A=cos\left(7\pi-x\right)+3sin\left(\dfrac{3\pi}{2}+x\right)-cos\left(\dfrac{\pi}{2}-x\right)-sinx\)
\(=cos\left(x+\pi\right)+3sin\left(-\dfrac{\pi}{2}+x\right)-cos\left(\dfrac{\pi}{2}-x\right)-sinx\)
\(=-cosx-3cosx-sinx-sinx=-4cosx-2sinx\)
rút gọn
a)A=\(\frac{1+2cos\alpha.sin\alpha}{cos^2\alpha-sin^2\alpha}\)
b)B=\(\left(1+\cot^2\alpha\right)\left(1-sin^2\alpha\right)\)-\(\left(1+\cot^2\alpha\right)\left(1-\cos^2\alpha\right)\)
c)C=\(\sin^6\alpha+\cos^6\alpha\)+\(3\sin^2\alpha.cos^2\alpha\)
BÀI 1 :cho tam giác ABC vuông tại A có AB=4cm BC=6cm. tính tỉ số lượng giác của các góc B và C
BÀI 2 :đơn giản các biểu thức
a)\(A=\cos^2x+\cos^2x.\cot g^2x\)
b)\(sin^2x+\sin^2x.\tan^2x\)
c)\(\dfrac{2cos^2x-1}{\sin x+\cos x}\)
d)\(\dfrac{\cos x}{1+\sin x}+\tan x\)
1)
a) Biết sin a= \(\frac{5}{3}\), tính cos a; tan a, cot a
b) Biết tan a= \(\frac{7}{24}\) tính cos a; sin a, cot a
( a: alpha)
2) cho góc nhọn a. rút gọn các biểu thức sau:
a) A=(sin a + cos a )2 + (sin a - cos a02
b) B= sin6 a + cos6 a +3sin2 a . cos2 a
mong mn giúp mình. mình sẽ tick cho bạn giúp mình trả lời 2 bài này
1) Rút gọn biểu thức:
2cos2 a - 1
sin a+ cos a
2)tính giá trị biểu thức:
sin 25 + cos 70
sin 20 + cos 65
3) cho tam giác ABC nhọn. Chứng minh rằng: AB2 = AC2 + BC2 - 2AC.BC.cosC
mình ko bt cách viết phân số nên đường gạch ngang mờ mờ mà các bạn nhìn là phân số nhé
Rút gọn
\(A=\cos^2\alpha+cos^2\alpha+cot^2\alpha\)
\(B=\sin^2\alpha+sin^2\alpha\cdot tan^2\alpha\)
\(C=\frac{2cos^2\alpha-1}{\sin\alpha+cos^2\alpha}\)
Rút gọn các biểu thức sau :
a) (1- sin^2 x) cot^2 x + 1- cot^2 x
b) ( tan x + cot x ) ^2 - ( tan x - cot x ) ^2
c) ( x. Sin a - y. Cos a )^2 + ( x. Cos a + y. Sin a )^2
a, \(\left(1-sin^2x\right)cot^2x+1-cot^2x\)
\(=cot^2x-sin^2x.cot^2x+1-cot^2x\)
\(=1-sin^2x.\frac{\text{cos}^2x}{sin^2x}=1-\text{cos}^2x=sin^2x\)
b,\(\left(tanx+cotx\right)^2-\left(tanx-cotx\right)2\)
\(=tan^2x2.tanx.cotx+cot^2x-tan^2x+2tanx.cotx-cot^2x\)
\(=4tanxcotx=4\)
c,\(\left(xsina-y\text{cos}a\right)^2+\left(x\text{cos}a+ysina\right)^2\)
\(=x^2sin^2a=2xysina\text{cos}a+y^2\text{cos}^2a+2xysina\text{cos}a+y^2sin^2a\)
\(=x^2\left(sin^2a+\text{cos}^2a\right)+y^2\left(sin^2a+\text{cos}^2a\right)\)
\(=x^2+y^2\)
rút gọn hộ biểu thứcnày vs 4.cos(a-b).cos(b-c).cos(c-a)